IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i2d10.1007_s10479-021-04467-5.html
   My bibliography  Save this article

Impacts of synergies on software project scheduling

Author

Listed:
  • Zsolt T. Kosztyán

    (University of Pannonia
    Institute of Advanced Studies (iASK)
    MTA-PE Budapest Ranking Research Group)

  • Eszter Bogdány

    (University of Pannonia)

  • István Szalkai

    (University of Pannonia)

  • Marcell T. Kurbucz

    (University of Pannonia
    Wigner Research Centre for Physics)

Abstract

The adequate allocation of human resources is one of the most important success factors in software projects. Although project teams can be regarded as complex systems in which a team’s performance is highly influenced by the interdependencies among team members, the allocation methods applied to date have focused only on individual skills and consider project teams as units of isolated workers. The existing software project scheduling problem (SPSP) is extended to (1) consider different skills and efficiencies of employees and (2) examine the pairwise synergies between them, as well as to (3) handle the flexible structure of the project that is used in flexible management, such as agile project management. To better understand the impact of synergies on the project’s cost, the solutions of the traditional and extended SPSP versions are analyzed and compared on the generated project networks. The results show not only that this factor has a highly significant impact but also that the project cost strongly depends on the structural parameters of the synergy network (e.g., topology, network size and degree centrality). Among these parameters, a low degree of centrality and some topologies, most notably star and circular networks, obtained the highest reduction in the projects’ total cost.

Suggested Citation

  • Zsolt T. Kosztyán & Eszter Bogdány & István Szalkai & Marcell T. Kurbucz, 2022. "Impacts of synergies on software project scheduling," Annals of Operations Research, Springer, vol. 312(2), pages 883-908, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-021-04467-5
    DOI: 10.1007/s10479-021-04467-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04467-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04467-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosztyán, Zsolt T. & Szalkai, István, 2018. "Hybrid time-quality-cost trade-off problems," Operations Research Perspectives, Elsevier, vol. 5(C), pages 306-318.
    2. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    3. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    4. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    5. Vega-Velázquez, Miguel Ángel & García-Nájera, Abel & Cervantes, Humberto, 2018. "A survey on the Software Project Scheduling Problem," International Journal of Production Economics, Elsevier, vol. 202(C), pages 145-161.
    6. Vanhoucke, Mario & Coelho, Jose & Debels, Dieter & Maenhout, Broos & Tavares, Luis V., 2008. "An evaluation of the adequacy of project network generators with systematically sampled networks," European Journal of Operational Research, Elsevier, vol. 187(2), pages 511-524, June.
    7. Kosztyán, Zsolt T. & Pribojszki-Németh, Anikó & Szalkai, István, 2019. "Hybrid multimode resource-constrained maintenance project scheduling problem," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
    9. Valadares Tavares, L. & Antunes Ferreira, J. & Silva Coelho, J., 1999. "The risk of delay of a project in terms of the morphology of its network," European Journal of Operational Research, Elsevier, vol. 119(2), pages 510-537, December.
    10. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    11. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Kosztyán, Zsolt T. & Szalkai, István, 2018. "Hybrid time-quality-cost trade-off problems," Operations Research Perspectives, Elsevier, vol. 5(C), pages 306-318.
    3. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    4. Van Eynde, Rob & Vanhoucke, Mario, 2022. "New summary measures and datasets for the multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 853-868.
    5. Mick Van Den Eeckhout & Broos Maenhout & Mario Vanhoucke, 2020. "Mode generation rules to define activity flexibility for the integrated project staffing problem with discrete time/resource trade-offs," Annals of Operations Research, Springer, vol. 292(1), pages 133-160, September.
    6. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    7. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
    8. Ben Issa, Samer & Patterson, Raymond A. & Tu, Yiliu, 2021. "Solving resource-constrained multi-project environment under different activity assumptions," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    10. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    11. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    12. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    13. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    14. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
    15. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.
    16. Colin, Jeroen & Vanhoucke, Mario, 2014. "Setting tolerance limits for statistical project control using earned value management," Omega, Elsevier, vol. 49(C), pages 107-122.
    17. Estévez-Fernández, Arantza, 2012. "A game theoretical approach to sharing penalties and rewards in projects," European Journal of Operational Research, Elsevier, vol. 216(3), pages 647-657.
    18. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    19. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    20. Hongbo Li & Zhe Xu & Wenchao Wei, 2018. "Bi-Objective Scheduling Optimization for Discrete Time/Cost Trade-Off in Projects," Sustainability, MDPI, vol. 10(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-021-04467-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.