IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v76y2020i1d10.1007_s10898-019-00832-8.html
   My bibliography  Save this article

Multimode resource-constrained project scheduling in flexible projects

Author

Listed:
  • Zsolt T. Kosztyán

    (University of Pannonia)

  • István Szalkai

    (University of Pannonia)

Abstract

Flexible agile and extreme project management methods have become increasingly popular among practitioners, particularly in the IT and R&D sectors. In contrast to the theoretically and algorithmically well-established and developed trade-off and multimode methods applied in traditional project management methods, flexible project scheduling methods, which are applied in agile, hybrid, and especially extreme project management, lack a principled foundation and algorithmic handling. The aim of this paper is to fill this gap. We propose a matrix-based method that provides scores for alternative project plans that host flexible task dependencies and undecided, supplementary task completion while also handling the new but unplanned tasks. In addition, traditional multimode resource-constrained project scheduling problems are also covered. The proposed method can bridge the flexible and traditional approaches.

Suggested Citation

  • Zsolt T. Kosztyán & István Szalkai, 2020. "Multimode resource-constrained project scheduling in flexible projects," Journal of Global Optimization, Springer, vol. 76(1), pages 211-241, January.
  • Handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00832-8
    DOI: 10.1007/s10898-019-00832-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00832-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00832-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanhoucke, Mario, 2005. "New computational results for the discrete time/cost trade-off problem with time-switch constraints," European Journal of Operational Research, Elsevier, vol. 165(2), pages 359-374, September.
    2. Prabuddha De & E. James Dunne & Jay B. Ghosh & Charles E. Wells, 1997. "Complexity of the Discrete Time-Cost Tradeoff Problem for Project Networks," Operations Research, INFORMS, vol. 45(2), pages 302-306, April.
    3. Demeulemeester, Erik L. & Herroelen, Willy S. & Elmaghraby, Salah E., 1996. "Optimal procedures for the discrete time/cost trade-off problem in project networks," European Journal of Operational Research, Elsevier, vol. 88(1), pages 50-68, January.
    4. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    5. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    6. Said, Samer S. & Haouari, Mohamed, 2015. "A hybrid simulation-optimization approach for the robust Discrete Time/Cost Trade-off Problem," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 628-636.
    7. HazIr, Öncü & Erel, Erdal & Günalay, Yavuz, 2011. "Robust optimization models for the discrete time/cost trade-off problem," International Journal of Production Economics, Elsevier, vol. 130(1), pages 87-95, March.
    8. Babu, A. J. G. & Suresh, Nalina, 1996. "Project management with time, cost, and quality considerations," European Journal of Operational Research, Elsevier, vol. 88(2), pages 320-327, January.
    9. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    10. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    11. Stefan Creemers, 2015. "Minimizing the expected makespan of a project with stochastic activity durations under resource constraints," Post-Print hal-02992649, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    2. Zsolt T. Kosztyán & Eszter Bogdány & István Szalkai & Marcell T. Kurbucz, 2022. "Impacts of synergies on software project scheduling," Annals of Operations Research, Springer, vol. 312(2), pages 883-908, May.
    3. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosztyán, Zsolt T. & Jakab, Róbert & Novák, Gergely & Hegedűs, Csaba, 2020. "Survive IT! Survival analysis of IT project planning approaches," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Kosztyán, Zsolt T. & Szalkai, István, 2018. "Hybrid time-quality-cost trade-off problems," Operations Research Perspectives, Elsevier, vol. 5(C), pages 306-318.
    3. Kosztyán, Zsolt T. & Pribojszki-Németh, Anikó & Szalkai, István, 2019. "Hybrid multimode resource-constrained maintenance project scheduling problem," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Xue Li & Zhengwen He & Nengmin Wang & Mario Vanhoucke, 2022. "Multimode time-cost-robustness trade-off project scheduling problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1173-1202, July.
    5. Hongbo Li & Zhe Xu & Wenchao Wei, 2018. "Bi-Objective Scheduling Optimization for Discrete Time/Cost Trade-Off in Projects," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    6. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
    8. Eleni Hadjiconstantinou & Evelina Klerides, 2010. "A new path-based cutting plane approach for the discrete time-cost tradeoff problem," Computational Management Science, Springer, vol. 7(3), pages 313-336, July.
    9. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    10. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    11. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    12. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    13. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    14. A B Hafızoğlu & M Azizoğlu, 2010. "Linear programming based approaches for the discrete time/cost trade-off problem in project networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 676-685, April.
    15. Brčić, Mario & Katić, Marija & Hlupić, Nikica, 2019. "Planning horizons based proactive rescheduling for stochastic resource-constrained project scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 58-66.
    16. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    17. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    18. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    19. Behrad Barghi & Shahram Shadrokh Sikari, 2022. "Meta-heuristic Solution with Considering Setup Time for Multi-Skilled Project Scheduling Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-23, March.
    20. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:76:y:2020:i:1:d:10.1007_s10898-019-00832-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.