IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-018-2765-7.html
   My bibliography  Save this article

New model for addressing supply chain and transport safety for disaster relief operations

Author

Listed:
  • Abhijit Baidya

    (National Institute of Technology Agartala)

  • Uttam Kumar Bera

    (National Institute of Technology Agartala)

Abstract

The supply chain and logistical operations uncertainty are the most significant part for both businesses and economic activities. This paper investigates multi-item multi-stage solid transportation problem with fuzzy-stochastic environment to maximize the total route safety under safety constraint, in which the unit transportation costs, availabilities, demands, conveyance capacities, safety factors and desire total safety measure are supposed to be fuzzy-stochastic in nature. The multi-stage solid transportation model is developed in such a way that the cargoes are transported from sources to destinations via intermediate destination centers (DCs), where the DCs for stage-1 is reduced to the supply points for stage-2 and DCs for stage-2 is reduced to the supply points for stage-3 and similarly the DCs for the stage-$$(\hbox {n}-1)$$(n-1) is converted to the supply points for stage-n. The smooth transportation in the developing countries or rural areas or disaster affected areas is difficult due to hilly region, bad road, insurgency activities, landslides, etc. and for this reason, the safety objective function is considered to maximize under additional safety constraints. Two reduction procedures are used to get the equivalent deterministic form of the fuzzy-stochastic model. In the first procedure, the mean expectation is calculated considering lower $$\alpha $$α-cut, upper $$\alpha $$α-cut and signed distance of fuzzy numbers. However, for the second procedure, credibility measure, mean chances and expectation are taken into account to find the deterministic equivalent of the fuzzy-stochastic events. The modified GRG technique (LINGO.13.0 optimization solver) is used to solve the reduced deterministic model. Finally, a numerical example is provided to illustrate the model and methodology.

Suggested Citation

  • Abhijit Baidya & Uttam Kumar Bera, 2019. "New model for addressing supply chain and transport safety for disaster relief operations," Annals of Operations Research, Springer, vol. 283(1), pages 33-69, December.
  • Handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-018-2765-7
    DOI: 10.1007/s10479-018-2765-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2765-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2765-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Minghe & Aronson, Jay E. & McKeown, Patrick G. & Drinka, Dennis, 1998. "A tabu search heuristic procedure for the fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 441-456, April.
    2. Pramanik, Sutapa & Jana, Dipak Kumar & Maiti, Manoranjan, 2016. "Bi-criteria solid transportation problem with substitutable and damageable items in disaster response operations on fuzzy rough environment," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 1-13.
    3. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    4. Leon Cooper & Larry J. Leblanc, 1977. "Stochastic transportation problems and other newtork related convex problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 24(2), pages 327-337, June.
    5. Yao, Jing-Shing & Chen, Miao-Sheng & Lu, Huei-Fu, 2006. "A fuzzy stochastic single-period model for cash management," European Journal of Operational Research, Elsevier, vol. 170(1), pages 72-90, April.
    6. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    7. Berkoune, Djamel & Renaud, Jacques & Rekik, Monia & Ruiz, Angel, 2012. "Transportation in disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 23-32.
    8. Salah E. Elmaghraby, 1960. "Allocation under Uncertainty when the Demand has Continuous D.F," Management Science, INFORMS, vol. 6(3), pages 270-294, April.
    9. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    10. Zbigniew Michalewicz & George A. Vignaux & Matthew Hobbs, 1991. "A Nonstandard Genetic Algorithm for the Nonlinear Transportation Problem," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 307-316, November.
    11. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    2. Serap Ergün & Pınar Usta & Sırma Zeynep Alparslan Gök & Gerhard Wilhelm Weber, 2023. "A game theoretical approach to emergency logistics planning in natural disasters," Annals of Operations Research, Springer, vol. 324(1), pages 855-868, May.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F Altiparmak & I Karaoglan, 2008. "An adaptive tabu-simulated annealing for concave cost transportation problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 331-341, March.
    2. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    3. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    4. Xiaoyang Zhou & Yan Tu & Jing Han & Jiuping Xu & Xionghui Ye, 2017. "A Class of Level-2 Fuzzy Decision-Making Model with Expected Objectives and Chance Constraints: Application to Supply Chain Network Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 907-938, July.
    5. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    6. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    7. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    8. Klose, Andreas & Drexl, Andreas, 2001. "Combinatorial optimisation problems of the assignment type and a partitioning approach," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 545, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.
    10. Masoud Rabbani & Ali Sabbaghnia & Mahdi Mobini & Jafar Razmi, 2020. "A graph theory-based algorithm for a multi-echelon multi-period responsive supply chain network design with lateral-transshipments," Operational Research, Springer, vol. 20(4), pages 2497-2517, December.
    11. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    12. Zhang, Ning & Alipour, Alice, 2022. "Flood risk assessment and application of risk curves for design of mitigation strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    13. Mohammad Saeid Atabaki & Mohammad Mohammadi & Bahman Naderi, 2017. "Hybrid Genetic Algorithm and Invasive Weed Optimization via Priority Based Encoding for Location-Allocation Decisions in a Three-Stage Supply Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-44, April.
    14. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    15. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    16. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    17. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    18. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    19. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    20. Hammami, Ramzi & Frein, Yannick & Hadj-Alouane, Atidel B., 2009. "A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study," International Journal of Production Economics, Elsevier, vol. 122(1), pages 351-365, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-018-2765-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.