IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v36y2022ics1874548221000731.html
   My bibliography  Save this article

Flood risk assessment and application of risk curves for design of mitigation strategies

Author

Listed:
  • Zhang, Ning
  • Alipour, Alice

Abstract

A transportation network is a critical infrastructure system that forms the backbone for economy, serves the everyday life, and is critical to national safety. Holistic design of such a system is required to ensure smooth operation under both operational and emergency conditions. However, with ever-changing climate, transportation systems are exposed to significant weather-related hazards. For example, flood events are proven to be a dominant hazard in the U.S. due to their frequency and intensity. While flood events affect state agencies by requiring direct tax-dollar investments to repair damages, they also adversely influence communities by producing substantial indirect losses. This motivates state agencies, asset owners, and planners to developcost-effective mitigation strategies. However, the uncertainty of flooding and the interdependency between assets (such as roads and bridges) within the transportation system and traffic users on one hand and limited budgetary resources on the other hand, challenge the design of a cost-effective risk mitigation strategy. This is exacerbated by the fact that the estimation of indirect losses associated with closures resulting from damaged assets is difficult to assess. To address such gaps, this paper develops an integrated risk assessment method that synthesizes various inputs, including hazards, geographic features, spatial distribution of assets, and traffic, to simulate the flood-induced risk to a real-life transportation system. This framework is capable of estimating actual physical infrastructure damages as well as quantitatively evaluating the indirect losses of traffic users such as traffic delays and opportunity costs closely associated with flood risk. The developed flood risk curves can be used by decision-makers to implement proper pre-event mitigation or post-event response plans.

Suggested Citation

  • Zhang, Ning & Alipour, Alice, 2022. "Flood risk assessment and application of risk curves for design of mitigation strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
  • Handle: RePEc:eee:ijocip:v:36:y:2022:i:c:s1874548221000731
    DOI: 10.1016/j.ijcip.2021.100490
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548221000731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2021.100490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zbigniew Michalewicz & George A. Vignaux & Matthew Hobbs, 1991. "A Nonstandard Genetic Algorithm for the Nonlinear Transportation Problem," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 307-316, November.
    2. Jean Andrey & Brian Mills & Mike Leahy & Jeff Suggett, 2003. "Weather as a Chronic Hazard for Road Transportation in Canadian Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 319-343, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    2. Abhijit Baidya & Uttam Kumar Bera, 2019. "New model for addressing supply chain and transport safety for disaster relief operations," Annals of Operations Research, Springer, vol. 283(1), pages 33-69, December.
    3. F Altiparmak & I Karaoglan, 2008. "An adaptive tabu-simulated annealing for concave cost transportation problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 331-341, March.
    4. Masoud Rabbani & Ali Sabbaghnia & Mahdi Mobini & Jafar Razmi, 2020. "A graph theory-based algorithm for a multi-echelon multi-period responsive supply chain network design with lateral-transshipments," Operational Research, Springer, vol. 20(4), pages 2497-2517, December.
    5. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    6. Mohammad Saeid Atabaki & Mohammad Mohammadi & Bahman Naderi, 2017. "Hybrid Genetic Algorithm and Invasive Weed Optimization via Priority Based Encoding for Location-Allocation Decisions in a Three-Stage Supply Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-44, April.
    7. Bartosz Bursa & Markus Mailer & Kay W. Axhausen, 2022. "Intra-destination travel behavior of alpine tourists: a literature review on choice determinants and the survey work," Transportation, Springer, vol. 49(5), pages 1465-1516, October.
    8. Jaroszweski, David & Chapman, Lee & Petts, Judith, 2010. "Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach," Journal of Transport Geography, Elsevier, vol. 18(2), pages 331-335.
    9. Yajie Zou & Yue Zhang & Kai Cheng, 2021. "Exploring the Impact of Climate and Extreme Weather on Fatal Traffic Accidents," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    10. Islam, Mazharul & Alharthi, Majed & Alam, Md. Mahmudul, 2018. "The Impacts of Climate Change on Road Traffic Accidents in Saudi Arabia," OSF Preprints 2p5aj, Center for Open Science.
    11. Andrey, Jean & Hambly, Derrick & Mills, Brian & Afrin, Sadia, 2013. "Insights into driver adaptation to inclement weather in Canada," Journal of Transport Geography, Elsevier, vol. 28(C), pages 192-203.
    12. Hwang, Taesung & Chung, Koohong & Ragland, David & Chan, Chin-Yao, 2008. "Identification of High Collision Concentration Locations Under Wet Weather Conditions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1xp3g5b4, Institute of Transportation Studies, UC Berkeley.
    13. Angus Eugene Retallack & Bertram Ostendorf, 2020. "Relationship Between Traffic Volume and Accident Frequency at Intersections," IJERPH, MDPI, vol. 17(4), pages 1-22, February.
    14. Daniel Burow & Christopher Atkinson, 2019. "An examination of traffic volume during snow events in northeast Ohio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1179-1189, November.
    15. Andrey, Jean, 2010. "Long-term trends in weather-related crash risks," Journal of Transport Geography, Elsevier, vol. 18(2), pages 247-258.
    16. Black, Alan W. & Mote, Thomas L., 2015. "Effects of winter precipitation on automobile collisions, injuries, and fatalities in the United States," Journal of Transport Geography, Elsevier, vol. 48(C), pages 165-175.
    17. Sharaf AlKheder & Fahad AlRukaibi & Ahmad Aiash & Abedallah Kader, 2022. "Weather risk contribution to traffic accidents types in Gulf Cooperation Council (GCC) countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2177-2187, November.
    18. Tsapakis, Ioannis & Cheng, Tao & Bolbol, Adel, 2013. "Impact of weather conditions on macroscopic urban travel times," Journal of Transport Geography, Elsevier, vol. 28(C), pages 204-211.
    19. Brazil, William & White, Arthur & Nogal, Maria & Caulfield, Brian & O'Connor, Alan & Morton, Craig, 2017. "Weather and rail delays: Analysis of metropolitan rail in Dublin," Journal of Transport Geography, Elsevier, vol. 59(C), pages 69-76.
    20. Derrick Hambly & Jean Andrey & Brian Mills & Chris Fletcher, 2013. "Projected implications of climate change for road safety in Greater Vancouver, Canada," Climatic Change, Springer, vol. 116(3), pages 613-629, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:36:y:2022:i:c:s1874548221000731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.