IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v256y2017i1d10.1007_s10479-015-2097-9.html
   My bibliography  Save this article

Modelling beneficiaries’ choice in disaster relief logistics

Author

Listed:
  • Christian Burkart

    (WU Vienna University of Economics and Business)

  • Pamela C. Nolz

    (AIT Austrian Institute of Technology)

  • Walter J. Gutjahr

    (University of Vienna)

Abstract

This paper introduces the element of beneficiaries’ choice into a location-routing problem for disaster relief logistics suited for decision support systems. Decision makers in humanitarian logistics face the challenge where to establish distribution centers (DCs) for relief goods. For this purpose, two objectives are considered: the impact of the relief operations on the beneficiaries and the efficient use of monetary resources. The proposed multi-objective location-routing model minimizes unserved demand as well as cost for opening DCs and for routing relief goods. It anticipates the choice of beneficiaries to which DC to go (if at all), based on a model adopted from the literature on competitive location analysis. A mathematical programming formulation is presented. For small instances, the Pareto front can be determined exactly using an epsilon constraint method. For solving also realistic instances, an evolutionary algorithm has been implemented and evaluated. The algorithms are tested on real-world instances from Mozambique. The results show that when designing a distribution network, improvements can be achieved by taking the predicted behavior of beneficiaries into account.

Suggested Citation

  • Christian Burkart & Pamela C. Nolz & Walter J. Gutjahr, 2017. "Modelling beneficiaries’ choice in disaster relief logistics," Annals of Operations Research, Springer, vol. 256(1), pages 41-61, September.
  • Handle: RePEc:spr:annopr:v:256:y:2017:i:1:d:10.1007_s10479-015-2097-9
    DOI: 10.1007/s10479-015-2097-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2097-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2097-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ford W. Harris, 1990. "How Many Parts to Make at Once," Operations Research, INFORMS, vol. 38(6), pages 947-950, December.
    2. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    3. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    4. T Drezner & Z Drezner, 2012. "Modelling lost demand in competitive facility location," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 201-206, February.
    5. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    6. Doerner, Karl & Focke, Axel & Gutjahr, Walter J., 2007. "Multicriteria tour planning for mobile healthcare facilities in a developing country," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1078-1096, June.
    7. Michel Gendreau & Gilbert Laporte & Frédéric Semet, 1997. "The Covering Tour Problem," Operations Research, INFORMS, vol. 45(4), pages 568-576, August.
    8. Oded Berman & Dmitry Krass, 2002. "Locating Multiple Competitive Facilities: Spatial Interaction Models with Variable Expenditures," Annals of Operations Research, Springer, vol. 111(1), pages 197-225, March.
    9. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    10. Erdogan, Günes & Cordeau, Jean-François & Laporte, Gilbert, 2010. "The Attractive Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 59-69, May.
    11. Naji-Azimi, Z. & Renaud, J. & Ruiz, A. & Salari, M., 2012. "A covering tour approach to the location of satellite distribution centers to supply humanitarian aid," European Journal of Operational Research, Elsevier, vol. 222(3), pages 596-605.
    12. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
    13. John R. Current & David A. Schilling, 1989. "The Covering Salesman Problem," Transportation Science, INFORMS, vol. 23(3), pages 208-213, August.
    14. L N Van Wassenhove, 2006. "Humanitarian aid logistics: supply chain management in high gear," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 475-489, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    2. Marion S. Rauner & Helmut Niessner & Steen Odd & Andrew Pope & Karen Neville & Sheila O’Riordan & Lisa Sasse & Kristina Tomic, 2018. "An advanced decision support system for European disaster management: the feature of the skills taxonomy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 485-530, June.
    3. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    4. Guo Fuli & Cyril Foropon & Ma Xin, 2022. "Reducing carbon emissions in humanitarian supply chain: the role of decision making and coordination," Annals of Operations Research, Springer, vol. 319(1), pages 355-377, December.
    5. M. Tadaros & A. Migdalas, 2022. "Bi- and multi-objective location routing problems: classification and literature review," Operational Research, Springer, vol. 22(5), pages 4641-4683, November.
    6. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    7. Akash Sinha & Prabhat Kumar & Nripendra P. Rana & Rubina Islam & Yogesh K. Dwivedi, 2019. "Impact of internet of things (IoT) in disaster management: a task-technology fit perspective," Annals of Operations Research, Springer, vol. 283(1), pages 759-794, December.
    8. Luke Muggy & Jessica L. Heier Stamm, 2020. "Decentralized beneficiary behavior in humanitarian supply chains: models, performance bounds, and coordination mechanisms," Annals of Operations Research, Springer, vol. 284(1), pages 333-365, January.
    9. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    10. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    11. Emre Çankaya & Ali Ekici & Okan Örsan Özener, 2019. "Humanitarian relief supplies distribution: an application of inventory routing problem," Annals of Operations Research, Springer, vol. 283(1), pages 119-141, December.
    12. TURKEŠ, Renata & SÖRENSEN, Kenneth, 2018. "Case studies and random instances for the problem of pre-positioning emergency supplies," Working Papers 2018004, University of Antwerp, Faculty of Business and Economics.
    13. Fan, Yu & Shao, Jianfang & Wang, Xihui, 2023. "Relief items procurement and delivery through cooperation with suppliers and logistics companies considering budget constraints," International Journal of Production Economics, Elsevier, vol. 264(C).
    14. Seongtae Kim & M. Ramkumar & Nachiappan Subramanian, 2019. "Logistics service provider selection for disaster preparation: a socio-technical systems perspective," Annals of Operations Research, Springer, vol. 283(1), pages 1259-1282, December.
    15. Christian Fikar & Patrick Hirsch & Pamela C. Nolz, 2018. "Agent-based simulation optimization for dynamic disaster relief distribution," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 423-442, June.
    16. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    17. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    18. Shuihua Han & Hu Huang & Zongwei Luo & Cyril Foropon, 2019. "Harnessing the power of crowdsourcing and Internet of Things in disaster response," Annals of Operations Research, Springer, vol. 283(1), pages 1175-1190, December.
    19. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    20. Fatemeh Faghih-Mohammadi & Mohammad Mahdi Nasiri & Dinçer Konur, 2023. "Cross-dock facility for disaster relief operations," Annals of Operations Research, Springer, vol. 322(1), pages 497-538, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    2. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    3. Eda Yücel & F. Sibel Salman & Burçin Bozkaya & Cemre Gökalp, 2020. "A data-driven optimization framework for routing mobile medical facilities," Annals of Operations Research, Springer, vol. 291(1), pages 1077-1102, August.
    4. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    5. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    6. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    7. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    8. H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
    9. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    10. Karaoğlan, İsmail & Erdoğan, Güneş & Koç, Çağrı, 2018. "The Multi-Vehicle Probabilistic Covering Tour Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 278-287.
    11. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2020. "Facility Dependent Distance Decay in Competitive Location," Networks and Spatial Economics, Springer, vol. 20(4), pages 915-934, December.
    12. Elfe Buluc & Meltem Peker & Bahar Y. Kara & Manoj Dora, 2022. "Covering vehicle routing problem: application for mobile child friendly spaces for refugees," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 461-484, June.
    13. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    14. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    15. Fernández, José & Hendrix, Eligius M.T., 2013. "Recent insights in Huff-like competitive facility location and design," European Journal of Operational Research, Elsevier, vol. 227(3), pages 581-584.
    16. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    17. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    18. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2011. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 420-440, May.
    19. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2023. "The Obnoxious Competitive Facility Location Model," Networks and Spatial Economics, Springer, vol. 23(4), pages 885-903, December.
    20. Bowerman, Robert & Hall, Brent & Calamai, Paul, 1995. "A multi-objective optimization approach to urban school bus routing: Formulation and solution method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 107-123, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:256:y:2017:i:1:d:10.1007_s10479-015-2097-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.