IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v144y2006i1p99-11010.1007-s10479-006-0057-0.html
   My bibliography  Save this article

The Vehicle Routing Problem with Demand Range

Author

Listed:
  • Ann Campbell

Abstract

We propose and formulate the vehicle routing problem with demand range (VRPDR), a new variation on the traditional vehicle routing problem. In the VRPDR, the delivery quantity for each customer i is allowed to vary from its original size d i by an amount α d i where 0 ≤ α > 1. In adding this limited flexibility to the problem, there is potential to generate significant savings in the total distance traveled. We address issues such as bounding the impact of a given α on total distance and provide empirical results to illustrate “typical” behavior. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Ann Campbell, 2006. "The Vehicle Routing Problem with Demand Range," Annals of Operations Research, Springer, vol. 144(1), pages 99-110, April.
  • Handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:99-110:10.1007/s10479-006-0057-0
    DOI: 10.1007/s10479-006-0057-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0057-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0057-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    2. Marielle Christiansen & Bjorn Nygreen, 1998. "A method for solving ship routing problemswith inventory constraints," Annals of Operations Research, Springer, vol. 81(0), pages 357-378, June.
    3. Gerard Sierksma & Gert Tijssen, 1998. "Routing helicopters for crew exchanges on off-shore locations," Annals of Operations Research, Springer, vol. 76(0), pages 261-286, January.
    4. Marielle Christiansen & Bjørn Nygreen, 1998. "Modelling path flows for a combined ship routingand inventory management problem," Annals of Operations Research, Springer, vol. 82(0), pages 391-413, August.
    5. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    6. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    7. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G Brønmo & M Christiansen & B Nygreen, 2007. "Ship routing and scheduling with flexible cargo sizes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(9), pages 1167-1177, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey W. Ohlmann & Michael J. Fry & Barrett W. Thomas, 2008. "Route Design for Lean Production Systems," Transportation Science, INFORMS, vol. 42(3), pages 352-370, August.
    2. Alejandro Toriello & George Nemhauser & Martin Savelsbergh, 2010. "Decomposing inventory routing problems with approximate value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 718-727, December.
    3. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    4. Agostinho Agra & Marielle Christiansen & Alexandrino Delgado, 2013. "Mixed Integer Formulations for a Short Sea Fuel Oil Distribution Problem," Transportation Science, INFORMS, vol. 47(1), pages 108-124, February.
    5. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    6. Saman Eskandarzadeh & Reza Tavakkoli-Moghaddam & Amir Azaron, 2009. "An extension of the relaxation algorithm for solving a special case of capacitated arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 214-234, February.
    7. Lee, Chi-Guhn & Epelman, Marina A. & White III, Chelsea C. & Bozer, Yavuz A., 2006. "A shortest path approach to the multiple-vehicle routing problem with split pick-ups," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 265-284, May.
    8. Sayarshad, Hamid R. & Gao, H. Oliver, 2018. "A non-myopic dynamic inventory routing and pricing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 83-98.
    9. C. Archetti & M. G. Speranza & A. Hertz, 2006. "A Tabu Search Algorithm for the Split Delivery Vehicle Routing Problem," Transportation Science, INFORMS, vol. 40(1), pages 64-73, February.
    10. Leonardo Berbotto & Sergio García & Francisco Nogales, 2014. "A Randomized Granular Tabu Search heuristic for the split delivery vehicle routing problem," Annals of Operations Research, Springer, vol. 222(1), pages 153-173, November.
    11. Brønmo, Geir & Nygreen, Bjørn & Lysgaard, Jens, 2010. "Column generation approaches to ship scheduling with flexible cargo sizes," European Journal of Operational Research, Elsevier, vol. 200(1), pages 139-150, January.
    12. Thierry Benoist & Frédéric Gardi & Antoine Jeanjean & Bertrand Estellon, 2011. "Randomized Local Search for Real-Life Inventory Routing," Transportation Science, INFORMS, vol. 45(3), pages 381-398, August.
    13. Jin, Mingzhou & Liu, Kai & Bowden, Royce O., 2007. "A two-stage algorithm with valid inequalities for the split delivery vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 105(1), pages 228-242, January.
    14. Hertz, Alain & Uldry, Marc & Widmer, Marino, 2012. "Integer linear programming models for a cement delivery problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 623-631.
    15. Jørgen Glomvik Rakke & Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2015. "A New Formulation Based on Customer Delivery Patterns for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 384-401, May.
    16. Claudia Archetti & Martin W. P. Savelsbergh & M. Grazia Speranza, 2006. "Worst-Case Analysis for Split Delivery Vehicle Routing Problems," Transportation Science, INFORMS, vol. 40(2), pages 226-234, May.
    17. Kirschstein, Thomas, 2018. "Rail transportation planning in the chemical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 142-160.
    18. S. Michel & F. Vanderbeck, 2012. "A Column-Generation Based Tactical Planning Method for Inventory Routing," Operations Research, INFORMS, vol. 60(2), pages 382-397, April.
    19. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:99-110:10.1007/s10479-006-0057-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.