IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i1d10.1007_s10182-023-00476-w.html
   My bibliography  Save this article

A spatial semiparametric M-quantile regression for hedonic price modelling

Author

Listed:
  • Francesco Schirripa Spagnolo

    (Università di Pisa)

  • Riccardo Borgoni

    (Università Degli Studi di Milano-Bicocca)

  • Antonella Carcagnì

    (Università Degli Studi di Milano-Bicocca)

  • Alessandra Michelangeli

    (Università Degli Studi di Milano-Bicocca)

  • Nicola Salvati

    (Università di Pisa)

Abstract

This paper proposes an M-quantile regression approach to address the heterogeneity of the housing market in a modern European city. We show how M-quantile modelling is a rich and flexible tool for empirical market price data analysis, allowing us to obtain a robust estimation of the hedonic price function whilst accounting for different sources of heterogeneity in market prices. The suggested methodology can generally be used to analyse nonlinear interactions between prices and predictors. In particular, we develop a spatial semiparametric M-quantile model to capture both the potential nonlinear effects of the cultural environment on pricing and spatial trends. In both cases, nonlinearity is introduced into the model using appropriate bases functions. We show how the implicit price associated with the variable that measures cultural amenities can be determined in this semiparametric framework. Our findings show that the effect of several housing attributes and urban amenities differs significantly across the response distribution, suggesting that buyers of lower-priced properties behave differently than buyers of higher-priced properties.

Suggested Citation

  • Francesco Schirripa Spagnolo & Riccardo Borgoni & Antonella Carcagnì & Alessandra Michelangeli & Nicola Salvati, 2024. "A spatial semiparametric M-quantile regression for hedonic price modelling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 159-183, March.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00476-w
    DOI: 10.1007/s10182-023-00476-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-023-00476-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-023-00476-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riccardo Borgoni & Alessandra Michelangeli & Nicola Pontarollo, 2018. "The value of culture to urban housing markets," Regional Studies, Taylor & Francis Journals, vol. 52(12), pages 1672-1683, December.
    2. Fritsch, Markus & Haupt, Harry & Ng, Pin T., 2016. "Urban house price surfaces near a World Heritage Site: Modeling conditional price and spatial heterogeneity," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 260-275.
    3. Coro Chasco & Julie Le Gallo, 2015. "Heterogeneity in Perceptions of Noise and Air Pollution: A Spatial Quantile Approach on the City of Madrid," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(3), pages 317-343, September.
    4. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    5. Charles-Olivier Amédée-Manesme & Michel Baroni & Fabrice Barthélémy & Francois des Rosiers, 2017. "Market heterogeneity and the determinants of Paris apartment prices: A quantile regression approach," Urban Studies, Urban Studies Journal Limited, vol. 54(14), pages 3260-3280, November.
    6. Leung, Tin Cheuk & Tsang, Kwok Ping, 2012. "Love thy neighbor: Income distribution and housing preferences," Journal of Housing Economics, Elsevier, vol. 21(4), pages 322-335.
    7. Harry Garretsen & Gerard Marlet, 2017. "Amenities and the attraction of Dutch cities," Regional Studies, Taylor & Francis Journals, vol. 51(5), pages 724-736, May.
    8. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    9. Annamaria Bianchi & Enrico Fabrizi & Nicola Salvati & Nikos Tzavidis, 2018. "Estimation and Testing in M‐quantile Regression with Applications to Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 86(3), pages 541-570, December.
    10. Marco Brambilla & Alessandra Michelangeli & Eugenio Peluso, 2013. "Equity in the City: On Measuring Urban (Ine)quality of Life," Urban Studies, Urban Studies Journal Limited, vol. 50(16), pages 3205-3224, December.
    11. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    12. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    13. Patrick Bayer & Robert McMillan & Kim Rueben, 2004. "An Equilibrium Model of Sorting in an Urban Housing Market," NBER Working Papers 10865, National Bureau of Economic Research, Inc.
    14. Liao, Wen-Chi & Wang, Xizhu, 2012. "Hedonic house prices and spatial quantile regression," Journal of Housing Economics, Elsevier, vol. 21(1), pages 16-27.
    15. Coro Chasco & Beatriz Sánchez, 2015. "Valuation of environmental pollution in the city of Madrid: an application with hedonic models and spatial quantile regression," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(1), pages 343-370.
    16. McMillen, Daniel, 2015. "Conditionally parametric quantile regression for spatial data: An analysis of land values in early nineteenth century Chicago," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 28-38.
    17. Riccardo Borgoni & Giacomo Degli Antoni & Marco Faillo & Alessandra Michelangeli, 2019. "Natives, immigrants and social cohesion: intra-city analysis combining the hedonic approach and a framed field experiment," International Review of Applied Economics, Taylor & Francis Journals, vol. 33(5), pages 697-711, September.
    18. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.
    19. Philip Kostov, 2009. "A Spatial Quantile Regression Hedonic Model of Agricultural Land Prices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(1), pages 53-72.
    20. Sofie R. Waltl, 2019. "Variation Across Price Segments and Locations: A Comprehensive Quantile Regression Analysis of the Sydney Housing Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 47(3), pages 723-756, September.
    21. Nikos Tzavidis & Nicola Salvati & Timo Schmid & Eirini Flouri & Emily Midouhas, 2016. "Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile random-effects regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 427-452, February.
    22. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    2. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Mateusz Tomal & Marco Helbich, 2023. "A spatial autoregressive geographically weighted quantile regression to explore housing rent determinants in Amsterdam and Warsaw," Environment and Planning B, , vol. 50(3), pages 579-599, March.
    4. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    5. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.
    6. Bohman, Helena & Nilsson, Désirée, 2016. "The impact of regional commuter trains on property values: Price segments and income," Journal of Transport Geography, Elsevier, vol. 56(C), pages 102-109.
    7. McMillen, Daniel & Shimizu, Chihiro, 2017. "Decompositions of Spatially Varying Quantile Distribution Estimates: The Rise and Fall of Tokyo House Prices," HIT-REFINED Working Paper Series 74, Institute of Economic Research, Hitotsubashi University.
    8. Mats Wilhelmsson, 2019. "Energy Performance Certificates and Its Capitalization in Housing Values in Sweden," Sustainability, MDPI, vol. 11(21), pages 1-16, November.
    9. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    10. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    11. De Novellis, G. & Musile Tanzi, P. & Ranalli, M.G. & Stanghellini, E., 2024. "Leveraged finance exposure in the banking system: Systemic risk and interconnectedness," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    12. James Dawber & Nicola Salvati & Enrico Fabrizi & Nikos Tzavidis, 2022. "Expectile regression for multi‐category outcomes with application to small area estimation of labour force participation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 590-619, December.
    13. Ismail, Muhammad & Warsame, Abukar & Wilhelmsson, Mats, 2020. "Measuring Gentrification with Getis-Ord Statistics and Its Effect on Housing Prices in Neighboring Areas: The Case of Stockholm," Working Paper Series 20/19, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance.
    14. Zhang, Lei & Yi, Yimin, 2017. "Quantile house price indices in Beijing," Regional Science and Urban Economics, Elsevier, vol. 63(C), pages 85-96.
    15. Marco Alfò & Maria Francesca Marino & Maria Giovanna Ranalli & Nicola Salvati & Nikos Tzavidis, 2021. "M‐quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 122-146, January.
    16. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    17. Pei-Ing Wu & Yi Chen & Je-Liang Liou, 2021. "Housing property along riverbanks in Taipei, Taiwan: a spatial quantile modelling of landscape benefits and flooding losses," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2404-2438, February.
    18. G. De Novellis & M. Doretti & G. E. Montanari & M. G. Ranalli & N. Salvati, 2024. "Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 753-781, July.
    19. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    20. Giulia Romano & Nicola Salvati & Andrea Guerrini, 2014. "Factors Affecting Water Utility Companies’ Decision to Promote the Reduction of Household Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5491-5505, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:1:d:10.1007_s10182-023-00476-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.