IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i1d10.1007_s10463-022-00840-8.html
   My bibliography  Save this article

Nonparametric inference for additive models estimated via simplified smooth backfitting

Author

Listed:
  • Suneel Babu Chatla

    (The University of Texas at El Paso)

Abstract

We investigate hypothesis testing in nonparametric additive models estimated using simplified smooth backfitting (Huang and Yu, Journal of Computational and Graphical Statistics, 28(2), 386–400, 2019). Simplified smooth backfitting achieves oracle properties under regularity conditions and provides closed-form expressions of the estimators that are useful for deriving asymptotic properties. We develop a generalized likelihood ratio (GLR) (Fan, Zhang and Zhang, Annals of statistics, 29(1),153–193, 2001) and a loss function (LF) (Hong and Lee, Annals of Statistics, 41(3), 1166–1203, 2013)-based testing framework for inference. Under the null hypothesis, both the GLR and LF tests have asymptotically rescaled chi-squared distributions, and both exhibit the Wilks phenomenon, which means the scaling constants and degrees of freedom are independent of nuisance parameters. These tests are asymptotically optimal in terms of rates of convergence for nonparametric hypothesis testing. Additionally, the bandwidths that are well suited for model estimation may be useful for testing. We show that in additive models, the LF test is asymptotically more powerful than the GLR test. We use simulations to demonstrate the Wilks phenomenon and the power of these proposed GLR and LF tests, and a real example to illustrate their usefulness.

Suggested Citation

  • Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:1:d:10.1007_s10463-022-00840-8
    DOI: 10.1007/s10463-022-00840-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-022-00840-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-022-00840-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:wyi:journl:002059 is not listed on IDEAS
    2. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
    3. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    4. Opsomer, Jean D., 2000. "Asymptotic Properties of Backfitting Estimators," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 166-179, May.
    5. Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2004. "Bootstrap Inference In Semiparametric Generalized Additive Models," Econometric Theory, Cambridge University Press, vol. 20(2), pages 265-300, April.
    6. Opsomer, Jean D. & Ruppert, D., 1998. "A Fully Automated Bandwidth Selection Method for Fitting Additive Models," Staff General Research Papers Archive 1176, Iowa State University, Department of Economics.
    7. E Mammen & S Sperlich, 2022. "Backfitting tests in generalized structured models [Effect measures in non-parametric regression with interactions between continuous exposures]," Biometrika, Biometrika Trust, vol. 109(1), pages 137-152.
    8. Huang, Li-Shan & Davidson, Philip W., 2010. "Analysis of Variance and F-Tests for Partial Linear Models With Applications to Environmental Health Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 991-1004.
    9. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    10. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    11. Jens Perch Nielsen & Stefan Sperlich, 2005. "Smooth backfitting in practice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 43-61, February.
    12. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    4. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    5. Martins-Filho, Carlos & yang, ke, 2007. "Finite sample performance of kernel-based regression methods for non-parametric additive models under common bandwidth selection criterion," MPRA Paper 39295, University Library of Munich, Germany.
    6. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.
    7. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    9. Xia Cui & Heng Peng & Songqiao Wen & Lixing Zhu, 2013. "Component Selection in the Additive Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 491-510, September.
    10. Fengler, M.R. & Mammen, E. & Vogt, M., 2015. "Specification and structural break tests for additive models with applications to realized variance data," Journal of Econometrics, Elsevier, vol. 188(1), pages 196-218.
    11. Lin, Huazhen & Pan, Lixian & Lv, Shaogao & Zhang, Wenyang, 2018. "Efficient estimation and computation for the generalised additive models with unknown link function," Journal of Econometrics, Elsevier, vol. 202(2), pages 230-244.
    12. Rui Li & Yuanyuan Zhang, 2021. "Two-stage estimation and simultaneous confidence band in partially nonlinear additive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1109-1140, November.
    13. Häggström, Jenny, 2013. "Bandwidth selection for backfitting estimation of semiparametric additive models: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 136-148.
    14. Abhijit Mandal, 2020. "An optimal test for the additive model with discrete or categorical predictors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1397-1417, December.
    15. de Uña Álvarez, Jacobo & Roca Pardiñas, Javier, 2009. "Additive models in censored regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3490-3501, July.
    16. Théophile T. Azomahou & Raouf Boucekkine & Bity Diene, 2009. "A closer look at the relationship between life expectancy and economic growth," International Journal of Economic Theory, The International Society for Economic Theory, vol. 5(2), pages 201-244, June.
    17. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    18. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    19. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    20. Chuanhua Wei & Yubo Luo & Xizhi Wu, 2012. "Empirical likelihood for partially linear additive errors-in-variables models," Statistical Papers, Springer, vol. 53(2), pages 485-496, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:1:d:10.1007_s10463-022-00840-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.