IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v72y2020i4d10.1007_s10463-019-00721-7.html
   My bibliography  Save this article

Detecting deviations from second-order stationarity in locally stationary functional time series

Author

Listed:
  • Axel Bücher

    (Heinrich-Heine-Universität Düsseldorf)

  • Holger Dette

    (Ruhr-Universität Bochum)

  • Florian Heinrichs

    (Ruhr-Universität Bochum)

Abstract

A time-domain test for the assumption of second-order stationarity of a functional time series is proposed. The test is based on combining individual cumulative sum tests which are designed to be sensitive to changes in the mean, variance and autocovariance operators, respectively. The combination of their dependent p values relies on a joint-dependent block multiplier bootstrap of the individual test statistics. Conditions under which the proposed combined testing procedure is asymptotically valid under stationarity are provided. A procedure is proposed to automatically choose the block length parameter needed for the construction of the bootstrap. The finite-sample behavior of the proposed test is investigated in Monte Carlo experiments, and an illustration on a real data set is provided.

Suggested Citation

  • Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
  • Handle: RePEc:spr:aistmt:v:72:y:2020:i:4:d:10.1007_s10463-019-00721-7
    DOI: 10.1007/s10463-019-00721-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-019-00721-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-019-00721-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    2. Aue, Alexander & Van Delft, Anne, 2017. "Testing for stationarity of functional time series in the frequency domain," LIDAM Discussion Papers ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Lei Jin & Suojin Wang & Haiyan Wang, 2015. "A new non-parametric stationarity test of time series in the time domain," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 893-922, November.
    4. Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
    5. Denis Bosq, 2002. "Estimation of Mean and Covariance Operator of Autoregressive Processes in Banach Spaces," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 287-306, October.
    6. Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
    7. Dehling, Herold & Durieu, Olivier & Volny, Dalibor, 2009. "New techniques for empirical processes of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3699-3718, October.
    8. Dette, Holger & Preuß, Philip & Vetter, Mathias, 2011. "A Measure of Stationarity in Locally Stationary Processes With Applications to Testing," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1113-1124.
    9. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    10. Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
    11. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    13. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    14. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    15. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    16. Herold Dehling & Olimjon Sharipov, 2005. "Estimation of Mean and Covariance Operator for Banach Space Valued Autoregressive Processes with Dependent Innovations," Statistical Inference for Stochastic Processes, Springer, vol. 8(2), pages 137-149, September.
    17. Yogesh Dwivedi & Suhasini Subba Rao, 2011. "A test for second‐order stationarity of a time series based on the discrete Fourier transform," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 68-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org.
    3. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    4. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    5. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    6. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    7. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    9. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    11. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    12. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    13. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    14. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    15. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    16. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    17. Tadas Danielius & Alfredas Račkauskas, 2022. "Multiple Change-Point Detection in a Functional Sample via the 𝒢-Sum Process," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    18. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    19. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    20. B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:72:y:2020:i:4:d:10.1007_s10463-019-00721-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.