Advanced Search
MyIDEAS: Login

Detecting changes in the mean of functional observations

Contents:

Author Info

  • István Berkes
  • Robertas Gabrys
  • Lajos Horváth
  • Piotr Kokoszka

Abstract

Principal component analysis has become a fundamental tool of functional data analysis. It represents the functional data as "X" "i" ("t")="μ"("t")+Σ 1≤"l">&infin ; "η" "i", "l" + "v" "l" ("t "), where "μ" is the common mean, "v" "l" are the eigenfunctions of the covariance operator and the "η" "i", "l" are the scores. Inferential procedures assume that the mean function "μ"("t") is the same for all values of "i". If, in fact, the observations do not come from one population, but rather their mean changes at some point(s), the results of principal component analysis are confounded by the change(s). It is therefore important to develop a methodology to test the assumption of a common functional mean. We develop such a test using quantities which can be readily computed in the R package fda. The null distribution of the test statistic is asymptotically pivotal with a well-known asymptotic distribution. The asymptotic test has excellent finite sample performance. Its application is illustrated on temperature data from England. Copyright (c) 2009 Royal Statistical Society.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2009.00713.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

Volume (Year): 71 (2009)
Issue (Month): 5 ()
Pages: 927-946

as in new window
Handle: RePEc:bla:jorssb:v:71:y:2009:i:5:p:927-946

Contact details of provider:
Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
Phone: -44-171-638-8998
Fax: -44-171-256-7598
Email:
Web page: http://wileyonlinelibrary.com/journal/rssb
More information through EDIRC

Order Information:
Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9868&doi=10.1111/(ISSN)1467-9868

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
  2. Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
  3. Fremdt, Stefan & Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef G., 2014. "Functional data analysis with increasing number of projections," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 313-332.
  4. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:5:p:927-946. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.