IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i3p629-660.html
   My bibliography  Save this article

Testing relevant hypotheses in functional time series via self‐normalization

Author

Listed:
  • Holger Dette
  • Kevin Kokot
  • Stanislav Volgushev

Abstract

We develop methodology for testing relevant hypotheses about functional time series in a tuning‐free way. Instead of testing for exact equality, e.g. for the equality of two mean functions from two independent time series, we propose to test the null hypothesis of no relevant deviation. In the two‐sample problem this means that an L2‐distance between the two mean functions is smaller than a prespecified threshold. For such hypotheses self‐normalization, which was introduced in 2010 by Shao, and Shao and Zhang and is commonly used to avoid the estimation of nuisance parameters, is not directly applicable. We develop new self‐normalized procedures for testing relevant hypotheses in the one‐sample, two‐sample and change point problem and investigate their asymptotic properties. Finite sample properties of the tests proposed are illustrated by means of a simulation study and data examples. Our main focus is on functional time series, but extensions to other settings are also briefly discussed.

Suggested Citation

  • Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:3:p:629-660
    DOI: 10.1111/rssb.12370
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12370
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12370?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    3. Lajos Horváth & Piotr Kokoszka & Ron Reeder, 2013. "Estimation of the mean of functional time series and a two-sample problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 103-122, January.
    4. Harchaoui, Z. & Lévy-Leduc, C., 2010. "Multiple Change-Point Estimation With a Total Variation Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1480-1493.
    5. Stefan Fremdt & Josef G. Steinebach & Lajos Horváth & Piotr Kokoszka, 2013. "Testing the Equality of Covariance Operators in Functional Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 138-152, March.
    6. David Kraus & Victor M. Panaretos, 2012. "Dispersion operators and resistant second-order functional data analysis," Biometrika, Biometrika Trust, vol. 99(4), pages 813-832.
    7. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2006. "On the use of the bootstrap for estimating functions with functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1063-1074, November.
    8. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    9. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    10. Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
    11. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    12. Panaretos, Victor M. & Kraus, David & Maddocks, John H., 2010. "Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 670-682.
    13. A. Aue & G. Rice & O. Sönmez, 2020. "Structural break analysis for spectrum and trace of covariance operators," Environmetrics, John Wiley & Sons, Ltd., vol. 31(1), February.
    14. Gina-Maria Pomann & Ana-Maria Staicu & Sujit Ghosh, 2016. "A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 395-414, April.
    15. Fremdt, Stefan & Horváth, Lajos & Kokoszka, Piotr & Steinebach, Josef G., 2014. "Functional data analysis with increasing number of projections," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 313-332.
    16. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    17. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    18. E. Paparoditis & T. Sapatinas, 2016. "Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data," Biometrika, Biometrika Trust, vol. 103(3), pages 727-733.
    19. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holger Dette & Martin Schumann, 2023. "Testing for equivalence of pre-trends in Difference-in-Differences estimation," Papers 2310.15796, arXiv.org.
    2. Kathrin Bissantz & Nicolai Bissantz & Katharina Proksch, 2021. "Nonparametric detection of changes over time in image data from fluorescence microscopy of living cells," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1001-1017, September.
    3. Nick Kloodt & Natalie Neumeyer & Ingrid Keilegom, 2021. "Specification testing in semi-parametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 980-1003, December.
    4. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    3. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.
    4. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    6. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    7. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    8. Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
    9. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    10. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    11. Alexander S. Long & Brian J. Reich & Ana‐Maria Staicu & John Meitzen, 2023. "A nonparametric test of group distributional differences for hierarchically clustered functional data," Biometrics, The International Biometric Society, vol. 79(4), pages 3778-3791, December.
    12. R. Bárcenas & J. Ortega & A. J. Quiroz, 2017. "Quadratic forms of the empirical processes for the two-sample problem for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 503-526, September.
    13. Kokoszka Piotr & Miao Hong & Zheng Ben, 2017. "Testing for asymmetry in betas of cumulative returns: Impact of the financial crisis and crude oil price," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 33-53, June.
    14. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    15. Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).
    16. Mengchen Wang & Trevor Harris & Bo Li, 2023. "Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 157-176, March.
    17. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    18. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    19. Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
    20. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:3:p:629-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.