IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v12y2018i1d10.1007_s11634-017-0307-9.html
   My bibliography  Save this article

Methods for the analysis of asymmetric pairwise relationships

Author

Listed:
  • Giuseppe Bove

    (Università Roma Tre)

  • Akinori Okada

    (Tama University)

Abstract

Asymmetric pairwise relationships are frequently observed in experimental and non-experimental studies. They can be analysed with different aims and approaches. A brief review of models and methods of multidimensional scaling and cluster analysis able to deal with asymmetric proximities is provided taking a ‘data-analytic’ approach and emphasizing data visualization.

Suggested Citation

  • Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
  • Handle: RePEc:spr:advdac:v:12:y:2018:i:1:d:10.1007_s11634-017-0307-9
    DOI: 10.1007/s11634-017-0307-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-017-0307-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-017-0307-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akinobu Takeuchi & Takayuki Saito & Hiroshi Yadohisa, 2007. "Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 123-143, June.
    2. Michael J. Greenacre & Patrick J. F. Groenen, 2016. "Weighted Euclidean Biplots," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 442-459, October.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. Roberto Rocci, 2004. "A general algorithm to fit constrained DEDICOM models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(2), pages 139-150, September.
    5. Michael Greenacre, 2000. "Correspondence analysis of square asymmetric matrices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 297-310.
    6. Berrie Zielman & Willem Heiser, 1993. "Analysis of asymmetry by a slide-vector," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 101-114, March.
    7. Richard A. Harshman & Paul E. Green & Yoram Wind & Margaret E. Lundy, 1982. "A Model for the Analysis of Asymmetric Data in Marketing Research," Marketing Science, INFORMS, vol. 1(2), pages 205-242.
    8. David Weeks & P. Bentler, 1982. "Restricted multidimensional scaling models for asymmetric proximities," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 201-208, June.
    9. A. G. Constantine & J. C. Gower, 1978. "Graphical Representation of Asymmetric Matrices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(3), pages 297-304, November.
    10. Donatella Vicari, 2014. "Classification of Asymmetric Proximity Data," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 386-420, October.
    11. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    12. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    13. Linton C. Freeman, 1997. "Uncovering Organizational Hierarchies," Computational and Mathematical Organization Theory, Springer, vol. 3(1), pages 5-18, March.
    14. Mark Rooij & Willem Heiser, 2005. "Graphical representations and odds ratios in a distance-association model for the analysis of cross-classified data," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 99-122, March.
    15. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    16. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    17. Saburi, S. & Chino, N., 2008. "A maximum likelihood method for an asymmetric MDS model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4673-4684, June.
    18. Peter Heijden & Jan Leeuw, 1985. "Correspondence analysis used complementary to loglinear analysis," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 429-447, December.
    19. C. Horan, 1969. "Multidimensional scaling: Combining observations when individuals have different perceptual structures," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 139-165, June.
    20. de Rooij, Mark, 2009. "Trend vector models for the analysis of change in continuous time for multiple groups," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3209-3216, June.
    21. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    22. Wayne DeSarbo & Michael Johnson & Ajay Manrai & Lalita Manrai & Elizabeth Edwards, 1992. "Tscale: A new multidimensional scaling procedure based on tversky's contrast model," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 43-69, March.
    23. Ledyard Tucker & Samuel Messick, 1963. "An individual differences model for multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 28(4), pages 333-367, December.
    24. Wayne Desarbo, 1982. "Gennclus: New models for general nonhierarchical clustering analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 449-475, December.
    25. Lawrence Hubert, 1973. "Min and max hierarchical clustering using asymmetric similarity measures," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 63-72, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying C. MacNab, 2023. "On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 263-293, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    2. Saburi, S. & Chino, N., 2008. "A maximum likelihood method for an asymmetric MDS model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4673-4684, June.
    3. Berrie Zielman & Willem Heiser, 1993. "Analysis of asymmetry by a slide-vector," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 101-114, March.
    4. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    5. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    6. Wayne DeSarbo & J. Carroll & Linda Clark & Paul Green, 1984. "Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 57-78, March.
    7. Mark de Rooij, 2008. "The analysis of change, Newton's law of gravity and association models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 137-157, January.
    8. Simon Blanchard & Daniel Aloise & Wayne DeSarbo, 2012. "The Heterogeneous P-Median Problem for Categorization Based Clustering," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 741-762, October.
    9. Donatella Vicari, 2014. "Classification of Asymmetric Proximity Data," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 386-420, October.
    10. Wayne DeSarbo & Michael Johnson & Ajay Manrai & Lalita Manrai & Elizabeth Edwards, 1992. "Tscale: A new multidimensional scaling procedure based on tversky's contrast model," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 43-69, March.
    11. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    12. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    13. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    14. Atsuho Nakayama & Daniel Baier, 2020. "Predicting brand confusion in imagery markets based on deep learning of visual advertisement content," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 927-945, December.
    15. Peter Schönemann, 1972. "An algebraic solution for a class of subjective metrics models," Psychometrika, Springer;The Psychometric Society, vol. 37(4), pages 441-451, December.
    16. Nijkamp, P. & Soffer, A., 1979. "Soft multicriteria decision models for urban renewal plans," Serie Research Memoranda 0005, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. Satoru Yokoyama & Atsuho Nakayama & Akinori Okada, 2009. "One-mode three-way overlapping cluster analysis," Computational Statistics, Springer, vol. 24(1), pages 165-179, February.
    18. Krijnen, Wim P., 2006. "Convergence of the sequence of parameters generated by alternating least squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 481-489, November.
    19. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    20. W. Alan Nicewander & Joseph Lee Rodgers, 2022. "Obituary: Bruce McArthur Bloxom 1938–2020," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1042-1044, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:12:y:2018:i:1:d:10.1007_s11634-017-0307-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.