IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v38y2018i2p163-173.html
   My bibliography  Save this article

Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching

Author

Listed:
  • Anna Heath
  • Ioanna Manolopoulou
  • Gianluca Baio

Abstract

Background. The Expected Value of Sample Information (EVSI) is used to calculate the economic value of a new research strategy. Although this value would be important to both researchers and funders, there are very few practical applications of the EVSI. This is due to computational difficulties associated with calculating the EVSI in practical health economic models using nested simulations. Methods. We present an approximation method for the EVSI that is framed in a Bayesian setting and is based on estimating the distribution of the posterior mean of the incremental net benefit across all possible future samples, known as the distribution of the preposterior mean. Specifically, this distribution is estimated using moment matching coupled with simulations that are available for probabilistic sensitivity analysis, which is typically mandatory in health economic evaluations. Results. This novel approximation method is applied to a health economic model that has previously been used to assess the performance of other EVSI estimators and accurately estimates the EVSI. The computational time for this method is competitive with other methods. Conclusion. We have developed a new calculation method for the EVSI which is computationally efficient and accurate. Limitations. This novel method relies on some additional simulation so can be expensive in models with a large computational cost.

Suggested Citation

  • Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.
  • Handle: RePEc:sae:medema:v:38:y:2018:i:2:p:163-173
    DOI: 10.1177/0272989X17738515
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X17738515
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X17738515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    2. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    4. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    5. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    6. Rochelle P Walensky & Robin Wood & Andrea L Ciaranello & A David Paltiel & Sarah B Lorenzana & Xavier Anglaret & Adam W Stoler & Kenneth A Freedberg & for the CEPAC-International Investigators, 2010. "Scaling Up the 2010 World Health Organization HIV Treatment Guidelines in Resource-Limited Settings: A Model-Based Analysis," PLOS Medicine, Public Library of Science, vol. 7(12), pages 1-12, December.
    7. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    8. Brennan, Alan & Kharroubi, Samer A., 2007. "Efficient computation of partial expected value of sample information using Bayesian approximation," Journal of Health Economics, Elsevier, vol. 26(1), pages 122-148, January.
    9. Karl Claxton, 1999. "Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 269-274, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathyn Vervaart & Eline Aas & Karl P. Claxton & Mark Strong & Nicky J. Welton & Torbjørn Wisløff & Anna Heath, 2023. "General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations," Medical Decision Making, , vol. 43(5), pages 595-609, July.
    2. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    3. Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
    4. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.
    5. Haitham Tuffaha, 2021. "Value of Information Analysis: Are We There Yet?," PharmacoEconomics - Open, Springer, vol. 5(2), pages 139-141, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    2. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    3. Oakley, Jeremy E. & Brennan, Alan & Tappenden, Paul & Chilcott, Jim, 2010. "Simulation sample sizes for Monte Carlo partial EVPI calculations," Journal of Health Economics, Elsevier, vol. 29(3), pages 468-477, May.
    4. Mark Strong & Jeremy E. Oakley & Alan Brennan & Penny Breeze, 2015. "Estimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 35(5), pages 570-583, July.
    5. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    6. Stefano Conti & Karl Claxton, 2009. "Dimensions of Design Space: A Decision-Theoretic Approach to Optimal Research Design," Medical Decision Making, , vol. 29(6), pages 643-660, November.
    7. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    8. Gordon Hazen, 2011. "Cohort Decomposition for Markov Cost-Effectiveness Models," Medical Decision Making, , vol. 31(1), pages 19-34, January.
    9. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    10. Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
    11. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    12. Nicolas A. Menzies, 2016. "An Efficient Estimator for the Expected Value of Sample Information," Medical Decision Making, , vol. 36(3), pages 308-320, April.
    13. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    14. Anna Heath & Natalia Kunst & Christopher Jackson & Mark Strong & Fernando Alarid-Escudero & Jeremy D. Goldhaber-Fiebert & Gianluca Baio & Nicolas A. Menzies & Hawre Jalal, 2020. "Calculating the Expected Value of Sample Information in Practice: Considerations from 3 Case Studies," Medical Decision Making, , vol. 40(3), pages 314-326, April.
    15. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    16. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Literature Analysis: A Review of Applications in Health Risk Management," Medical Decision Making, , vol. 24(3), pages 287-298, June.
    17. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    18. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    19. Penny Breeze & Alan Brennan, 2015. "Valuing Trial Designs from a Pharmaceutical Perspective Using Value‐Based Pricing," Health Economics, John Wiley & Sons, Ltd., vol. 24(11), pages 1468-1482, November.
    20. Manuel A. Espinoza & Andrea Manca & Karl Claxton & Mark J. Sculpher, 2014. "The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis," Medical Decision Making, , vol. 34(8), pages 951-964, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:38:y:2018:i:2:p:163-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.