Advanced Search
MyIDEAS: Login to save this paper or follow this series

Dimensions of design space: a decision-theoretic approach to optimal research design

Contents:

Author Info

  • Stefano Conti

    (Centre for Health Economics, University of York, UK.)

  • Karl Claxton

    (Centre for Health Economics, University of York and Department of Economics and Related Studies, University of York, UK.)

Abstract

Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study, but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal pay-off to proposed research is achieved when its sample sizes, and allocation between available treatment options, are chosen to maximise the Expected Net Benefit of Sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: i) a single trial of all the parameters; ii) a clinical trial providing evidence only on clinical endpoints; iii) an epidemiological study of natural history of disease and iv) a survey of quality of life. The possible combinations, samples sizes and allocation between trial arms are evaluated over a range of costeffectiveness thresholds. The computational challenges are addressed by implementing optimisation algorithms to search the ENBS surface more efficiently over such large dimensions.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.york.ac.uk/media/che/documents/papers/researchpapers/rp38_optimal_research_design.pdf
File Function: First version, 2008
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Health Economics, University of York in its series Working Papers with number 038cherp.

as in new window
Length: 26 pages
Date of creation: Jun 2008
Date of revision:
Handle: RePEc:chy:respap:38cherp

Contact details of provider:
Postal: York Y010 5DD
Phone: (01904) 321401
Fax: (0)1904 323759
Email:
Web page: http://www.york.ac.uk/che
More information through EDIRC

Related research

Keywords: Bayesian decision theory; expected value of information; research design; costeffectiveness analysis;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2001. "Representing uncertainty: the role of cost-effectiveness acceptability curves," Health Economics, John Wiley & Sons, Ltd., vol. 10(8), pages 779-787.
  2. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
  3. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
  4. Karl Claxton & John Posnett, . "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
  5. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
  6. Palmer, Stephen & Smith, Peter C., 2000. "Incorporating option values into the economic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 19(5), pages 755-766, September.
  7. Brennan, Alan & Kharroubi, Samer A., 2007. "Efficient computation of partial expected value of sample information using Bayesian approximation," Journal of Health Economics, Elsevier, vol. 26(1), pages 122-148, January.
  8. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:chy:respap:38cherp. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Frances Sharp).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.