Advanced Search
MyIDEAS: Login to save this article or follow this journal

Simulation sample sizes for Monte Carlo partial EVPI calculations

Contents:

Author Info

  • Oakley, Jeremy E.
  • Brennan, Alan
  • Tappenden, Paul
  • Chilcott, Jim
Registered author(s):

    Abstract

    Partial expected value of perfect information (EVPI) quantifies the value of removing uncertainty about unknown parameters in a decision model. EVPIs can be computed via Monte Carlo methods. An outer loop samples values of the parameters of interest, and an inner loop samples the remaining parameters from their conditional distribution. This nested Monte Carlo approach can result in biased estimates if small numbers of inner samples are used and can require a large number of model runs for accurate partial EVPI estimates. We present a simple algorithm to estimate the EVPI bias and confidence interval width for a specified number of inner and outer samples. The algorithm uses a relatively small number of model runs (we suggest approximately 600), is quick to compute, and can help determine how many outer and inner iterations are needed for a desired level of accuracy. We test our algorithm using three case studies.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8K-4YMK1FD-1/2/8b9522ae30b27397c3877c2092ff3e44
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Health Economics.

    Volume (Year): 29 (2010)
    Issue (Month): 3 (May)
    Pages: 468-477

    as in new window
    Handle: RePEc:eee:jhecon:v:29:y:2010:i:3:p:468-477

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/505560

    Related research

    Keywords: Economic model Expected value of perfect information Monte Carlo estimation Bayesian decision theory;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    2. Brennan, Alan & Kharroubi, Samer A., 2007. "Efficient computation of partial expected value of sample information using Bayesian approximation," Journal of Health Economics, Elsevier, vol. 26(1), pages 122-148, January.
    3. Meltzer, David, 2001. "Addressing uncertainty in medical cost-effectiveness analysis: Implications of expected utility maximization for methods to perform sensitivity analysis and the use of cost-effectiveness analysis to s," Journal of Health Economics, Elsevier, vol. 20(1), pages 109-129, January.
    4. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310.
    5. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost-effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392.
    6. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769.
    7. Elisabeth Fenwick & Karl Claxton & Mark Sculpher, 2005. "The value of implementation and the value of information: combined and uneven development," Working Papers 005cherp, Centre for Health Economics, University of York.
    8. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Laura McCullagh & Cathal Walsh & Michael Barry, 2012. "Value-of-Information Analysis to Reduce Decision Uncertainty Associated with the Choice of Thromboprophylaxis after Total Hip Replacement in the Irish Healthcare Setting," PharmacoEconomics, Springer, vol. 30(10), pages 941-959, October.
    2. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jhecon:v:29:y:2010:i:3:p:468-477. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.