IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v44y2019i1p3-24.html
   My bibliography  Save this article

Development and Application of an Exploratory Reduced Reparameterized Unified Model

Author

Listed:
  • Steven Andrew Culpepper

    (University of Illinois at Urbana-Champaign)

  • Yinghan Chen

    (University of Nevada, Reno)

Abstract

Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is a binary matrix that indicates the attributes needed for affirmative responses to each item. Estimation of Q is an important next step for improving classifications and broadening application of CDMs. Prior research primarily focused on an exploratory version of the restrictive deterministic-input, noisy-and-gate model, and research is needed to develop exploratory methods for more flexible CDMs. We consider Bayesian methods for estimating an exploratory version of the more flexible reduced reparameterized unified model (rRUM). We show that estimating the rRUM Q matrix is complicated by a confound between elements of Q and the rRUM item parameters. A Bayesian framework is presented that accurately recovers Q using a spike–slab prior for item parameters to select the required attributes for each item. We present Monte Carlo simulation studies, demonstrating the developed algorithm improves upon prior Bayesian methods for estimating the rRUM Q matrix. We apply the developed method to the Examination for the Certificate of Proficiency in English data set. The results provide evidence of five attributes with a partially ordered attribute hierarchy.

Suggested Citation

  • Steven Andrew Culpepper & Yinghan Chen, 2019. "Development and Application of an Exploratory Reduced Reparameterized Unified Model," Journal of Educational and Behavioral Statistics, , vol. 44(1), pages 3-24, February.
  • Handle: RePEc:sae:jedbes:v:44:y:2019:i:1:p:3-24
    DOI: 10.3102/1076998618791306
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998618791306
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998618791306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Andrew Culpepper, 2016. "Revisiting the 4-Parameter Item Response Model: Bayesian Estimation and Application," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1142-1163, December.
    2. Jonathan Templin & Laine Bradshaw, 2014. "Hierarchical Diagnostic Classification Models: A Family of Models for Estimating and Testing Attribute Hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 317-339, April.
    3. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    4. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    5. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    6. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    7. Yunxiao Chen & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2015. "Statistical Analysis of Q -Matrix Based Diagnostic Classification Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 850-866, June.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    2. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    3. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    4. Steven Andrew Culpepper, 2015. "Bayesian Estimation of the DINA Model With Gibbs Sampling," Journal of Educational and Behavioral Statistics, , vol. 40(5), pages 454-476, October.
    5. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    6. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    7. Steven Andrew Culpepper, 2019. "An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 921-940, December.
    8. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    9. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    10. Juntao Wang & Yuan Li, 2023. "DINA Model with Entropy Penalization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    11. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    12. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    13. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    14. Shiyu Wang & Yan Yang & Steven Andrew Culpepper & Jeffrey A. Douglas, 2018. "Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 57-87, February.
    15. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    16. Youn Seon Lim & Fritz Drasgow, 2019. "Conditional Independence and Dimensionality of Cognitive Diagnostic Models: a Test for Model Fit," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 295-305, July.
    17. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.
    18. Yuqi Gu, 2023. "Generic Identifiability of the DINA Model and Blessing of Latent Dependence," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 117-131, March.
    19. Hans-Friedrich Köhn & Chia-Yi Chiu, 2019. "Attribute Hierarchy Models in Cognitive Diagnosis: Identifiability of the Latent Attribute Space and Conditions for Completeness of the Q-Matrix," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 541-565, October.
    20. Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2023. "Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 361-386, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:44:y:2019:i:1:p:3-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.