IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v48y2021i4p945-963.html
   My bibliography  Save this article

Multi-objective trajectory optimization in planning for sequential activities across space and through time

Author

Listed:
  • Xin Feng

    (University of California at Santa Barbara, USA)

  • Shaohua Wang

    (University of California at Santa Barbara, USA; Institute of Geographic Sciences and Natural Resources Research, China Academy of Science, China)

  • Alan T Murray

    (University of California at Santa Barbara, USA)

  • Yuanpei Cao

    (Airbnb Incorporation, USA)

  • Song Gao

Abstract

Human movement and interaction across space and through time is full of economic and social opportunities. Access to information through location-based technologies offers potential for people to make better decisions about social activity participation needs and travel behavior preferences. Identifying an optimal trajectory (route) connecting desired activity locations for multiple attendees with space–time constraints is a challenging endeavor. This spatial organization task is formulated mathematically as a sequential, multi-objective optimization model. A framework consisting of context knowledge, geographic information systems, and spatial optimization is structured to solve this model, allowing for the integration of geographical and social networking considerations. The proposed approach offers a way to balance the tradeoffs of many participants, enabling explicit consideration of travel cost, personal preference, quality rating, etc. in activity planning and decision making. A case study is detailed involving the organization of multiple activities and multiple individuals. The application results highlight the utility and insight of the proposed model and associated solution approaches.

Suggested Citation

  • Xin Feng & Shaohua Wang & Alan T Murray & Yuanpei Cao & Song Gao, 2021. "Multi-objective trajectory optimization in planning for sequential activities across space and through time," Environment and Planning B, , vol. 48(4), pages 945-963, May.
  • Handle: RePEc:sae:envirb:v:48:y:2021:i:4:p:945-963
    DOI: 10.1177/2399808320913300
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808320913300
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808320913300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Song, Ying & Miller, Harvey J. & Stempihar, Jeff & Zhou, Xuesong, 2017. "Green accessibility: Estimating the environmental costs of network-time prisms for sustainable transportation planning," Journal of Transport Geography, Elsevier, vol. 64(C), pages 109-119.
    2. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    3. Maria Scaparra & Richard Church & F. Medrano, 2014. "Corridor location: the multi-gateway shortest path model," Journal of Geographical Systems, Springer, vol. 16(3), pages 287-309, July.
    4. F. Benjamin Zhan & Charles E. Noon, 1998. "Shortest Path Algorithms: An Evaluation Using Real Road Networks," Transportation Science, INFORMS, vol. 32(1), pages 65-73, February.
    5. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    6. Shaw, Shih-Lung & Yu, Hongbo, 2009. "A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space," Journal of Transport Geography, Elsevier, vol. 17(2), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almobaideen, Wesam & Krayshan, Rand & Allan, Mamoon & Saadeh, Maha, 2017. "Internet of Things: Geographical Routing based on healthcare centers vicinity for mobile smart tourism destination," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 342-350.
    2. Chen, Jie & Shaw, Shih-Lung & Yu, Hongbo & Lu, Feng & Chai, Yanwei & Jia, Qinglei, 2011. "Exploratory data analysis of activity diary data: a space–time GIS approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 394-404.
    3. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    4. Aguiléra, Anne & Guillot, Caroline & Rallet, Alain, 2012. "Mobile ICTs and physical mobility: Review and research agenda," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 664-672.
    5. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    6. Kenneth Carling & Mengjie Han & Johan Håkansson, 2012. "Does Euclidean distance work well when the p-median model is applied in rural areas?," Annals of Operations Research, Springer, vol. 201(1), pages 83-97, December.
    7. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    8. Joni A Downs & Mark W Horner, 2014. "Adaptive-Velocity Time-Geographic Density Estimation for Mapping the Potential and Probable Locations of Mobile Objects," Environment and Planning B, , vol. 41(6), pages 1006-1021, December.
    9. Shih-Lung Shaw, 2023. "Time geography in a hybrid physical–virtual world," Journal of Geographical Systems, Springer, vol. 25(3), pages 339-356, July.
    10. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    11. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    12. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    14. Xingang Zhou & Anthony G. O. Yeh, 2021. "Understanding the modifiable areal unit problem and identifying appropriate spatial unit in jobs–housing balance and employment self-containment using big data," Transportation, Springer, vol. 48(3), pages 1267-1283, June.
    15. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    16. Zhu Jianming, 2014. "Non-linear Integer Programming Model and Algorithms for Connected p-facility Location Problem," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 451-460, October.
    17. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    18. Martínez, L. Miguel & Viegas, José Manuel, 2013. "A new approach to modelling distance-decay functions for accessibility assessment in transport studies," Journal of Transport Geography, Elsevier, vol. 26(C), pages 87-96.
    19. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    20. Yoon, Seo Youn & Ravulaparthy, Srinath K. & Goulias, Konstadinos G., 2014. "Dynamic diurnal social taxonomy of urban environments using data from a geocoded time use activity-travel diary and point-based business establishment inventory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 3-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:4:p:945-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.