IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v20y2018i3d10.1007_s10109-018-0274-5.html
   My bibliography  Save this article

Allocation using a heterogeneous space Voronoi diagram

Author

Listed:
  • Xin Feng

    (University of California at Santa Barbara)

  • Alan T. Murray

    (University of California at Santa Barbara)

Abstract

Spatial allocation is a fundamentally important process reflecting customer behavior, efficient service assignment, districting, etc., and is at the heart of many spatial analytical methods and processes. The Voronoi diagram has proven to be an important mathematical and geometric construct and has been widely applied in various fields because it is intuitive and efficient in the allocation and/or partitioning of space. However, existing Voronoi diagram approaches rely on the assumption that the attribute(s) of continuous space (non-generator points) is homogenous, which often is not the case for many application contexts. This paper introduces the concept of spatial heterogeneity in allocation. A new Voronoi diagram is defined—the heterogeneous Voronoi diagram. A geographic information system-based method is developed to derive the heterogeneous Voronoi diagram using discretized spatial allocation properties. Application of the heterogeneous Voronoi diagram is reported for a planning problem involving emergency drone delivery. Results show that response potential is over- and underestimated when heterogeneity and travel obstacles are disregarded. Further, feasibility, usefulness, and significance are demonstrated for incorporating geographic heterogeneity in the allocation process.

Suggested Citation

  • Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
  • Handle: RePEc:kap:jgeosy:v:20:y:2018:i:3:d:10.1007_s10109-018-0274-5
    DOI: 10.1007/s10109-018-0274-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-018-0274-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-018-0274-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. Maria Scaparra & Richard Church & F. Medrano, 2014. "Corridor location: the multi-gateway shortest path model," Journal of Geographical Systems, Springer, vol. 16(3), pages 287-309, July.
    3. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    4. Gérard P. Cachon, 2014. "Retail Store Density and the Cost of Greenhouse Gas Emissions," Management Science, INFORMS, vol. 60(8), pages 1907-1925, August.
    5. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    6. Okabe, Atsuyuki & Suzuki, Atsuo, 1997. "Locational optimization problems solved through Voronoi diagrams," European Journal of Operational Research, Elsevier, vol. 98(3), pages 445-456, May.
    7. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    8. Hanjoul, Pierre & Peeters, Dominique, 1987. "A facility location problem with clients' preference orderings," Regional Science and Urban Economics, Elsevier, vol. 17(3), pages 451-473, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    2. Zilong Feng & Tadashi Dohi & Won Young Yun, 2023. "System reliability analysis of a lamp problem by simulation," Journal of Risk and Reliability, , vol. 237(6), pages 1186-1198, December.
    3. Feng, Xin & Murray, Alan T. & Church, Richard L., 2021. "Drone service response: Spatiotemporal heterogeneity implications," Journal of Transport Geography, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    3. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    4. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    5. Li, Hongmei & Luo, Taibo & Xu, Yinfeng & Xu, Jiuping, 2018. "Minimax regret vertex centdian location problem in general dynamic networks," Omega, Elsevier, vol. 75(C), pages 87-96.
    6. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    7. Xiujuan Zhao & Wei Xu & Yunjia Ma & Fuyu Hu, 2015. "Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
    8. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    9. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    10. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    11. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    12. Richard Francis & Timothy Lowe, 2014. "Comparative error bound theory for three location models: continuous demand versus discrete demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 144-169, April.
    13. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    14. Smith, Honora K. & Harper, Paul R. & Potts, Chris N. & Thyle, Ann, 2009. "Planning sustainable community health schemes in rural areas of developing countries," European Journal of Operational Research, Elsevier, vol. 193(3), pages 768-777, March.
    15. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    16. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    17. Honora Smith & Daniel Cakebread & Maria Battarra & Ben Shelbourne & Naseem Cassim & Lindi Coetzee, 2017. "Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1068-1081, September.
    18. James H. Lambert & Mark W. Farrington, 2006. "Risk‐Based Objectives for the Allocation of Chemical, Biological, and Radiological Air Emissions Sensors," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1659-1674, December.
    19. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    20. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.

    More about this item

    Keywords

    Spatial heterogeneity; Voronoi diagram; Allocation;
    All these keywords.

    JEL classification:

    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:20:y:2018:i:3:d:10.1007_s10109-018-0274-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.