IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i9d10.1057_s41274-017-0240-5.html
   My bibliography  Save this article

Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa

Author

Listed:
  • Honora Smith

    (University of Southampton)

  • Daniel Cakebread

    (University of Southampton)

  • Maria Battarra

    (University of Bath)

  • Ben Shelbourne

    (University of Southampton)

  • Naseem Cassim

    (National Health Laboratory Service
    University of the Witwatersrand)

  • Lindi Coetzee

    (National Health Laboratory Service
    University of the Witwatersrand)

Abstract

HIV/AIDS test laboratories in South Africa face growing demand for high quality, timely and efficient testing of blood samples in all regions of the country, however rural. The three main tests for HIV/AIDS, namely CD4, HIV Viral Load, and Infant PCR, are provided in a hierarchy of levels: CD4 is the most frequently needed test, with most laboratory coverage needed. HIV Viral Load is less frequently called for, and Infant PCR is the rarest test to be done, with correspondingly fewest laboratories needed. The National Health Laboratory Service (NHLS) of South Africa operates an inbound hub network for collection of blood samples and transfer to laboratories equipped to carry out the required tests: test results are transmitted electronically, so there is no outbound or return transport. This paper describes the development of modelling carried out over several years of collaboration with NHLS to advise decision-makers on an appropriate and efficient hub network. We present mixed integer programs to find efficient locations for both network hubs and locations for all levels of laboratory testing. Novel features include variable or range constraints on maximum travel times to test locations.

Suggested Citation

  • Honora Smith & Daniel Cakebread & Maria Battarra & Ben Shelbourne & Naseem Cassim & Lindi Coetzee, 2017. "Location of a hierarchy of HIV/AIDS test laboratories in an inbound hub network: case study in South Africa," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1068-1081, September.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:9:d:10.1057_s41274-017-0240-5
    DOI: 10.1057/s41274-017-0240-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41274-017-0240-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41274-017-0240-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. T J Lowe & T Sim, 2013. "The hub covering flow problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 973-981, July.
    3. H K Smith & P R Harper & C N Potts, 2013. "Bicriteria efficiency/equity hierarchical location models for public service application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(4), pages 500-512, April.
    4. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    5. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    6. George C. Moore & Charles ReVelle, 1982. "The Hierarchical Service Location Problem," Management Science, INFORMS, vol. 28(7), pages 775-780, July.
    7. P. Chardaire & J.‐L. Lutton & A. Sutter, 1999. "Upper and lower bounds for the two‐level simple plant location problem," Annals of Operations Research, Springer, vol. 86(0), pages 117-140, January.
    8. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    9. Schultz, George P., 1970. "The logic of health care facility planning," Socio-Economic Planning Sciences, Elsevier, vol. 4(3), pages 383-393, September.
    10. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    11. A. J. Goldman, 1969. "Optimal Locations for Centers in a Network," Transportation Science, INFORMS, vol. 3(4), pages 352-360, November.
    12. Shyamadas Banerji & H. Benjamin Fisher, 1974. "Hierarchical Location Analysis For Integrated Area Planning In Rural Areas," Papers in Regional Science, Wiley Blackwell, vol. 33(1), pages 177-194, January.
    13. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    14. Marianov, Vladimir & Serra, Daniel, 2001. "Hierarchical location-allocation models for congested systems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 195-208, November.
    15. Hodgson, M.J., 1988. "An hierarchical location-allocation model for primary health care delivery in a developing area," Social Science & Medicine, Elsevier, vol. 26(1), pages 153-161, January.
    16. Jérôme Baray & Gérard Cliquet, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Post-Print halshs-00768004, HAL.
    17. Baray, Jérôme & Cliquet, Gérard, 2013. "Optimizing locations through a maximum covering/p-median hierarchical model: Maternity hospitals in France," Journal of Business Research, Elsevier, vol. 66(1), pages 127-132.
    18. Eiselt, H.A., 2007. "Locating landfills--Optimization vs. reality," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1040-1049, June.
    19. Teixeira, Joao C. & Antunes, Antonio P., 2008. "A hierarchical location model for public facility planning," European Journal of Operational Research, Elsevier, vol. 185(1), pages 92-104, February.
    20. Hinojosa, Y. & Puerto, J. & Fernandez, F. R., 2000. "A multiperiod two-echelon multicommodity capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 271-291, June.
    21. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    22. Narula, Subhash C., 1984. "Hierarchical location-allocation problems: A classification scheme," European Journal of Operational Research, Elsevier, vol. 15(1), pages 93-99, January.
    23. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    24. Lin, Cheng-Chang, 2010. "The integrated secondary route network design model in the hierarchical hub-and-spoke network for dual express services," International Journal of Production Economics, Elsevier, vol. 123(1), pages 20-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    2. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    3. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    4. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    5. Karakaya, Şakir & Meral, Sedef, 2022. "A biobjective hierarchical location-allocation approach for the regionalization of maternal-neonatal care," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    6. Smith, Honora K. & Harper, Paul R. & Potts, Chris N. & Thyle, Ann, 2009. "Planning sustainable community health schemes in rural areas of developing countries," European Journal of Operational Research, Elsevier, vol. 193(3), pages 768-777, March.
    7. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    8. Wei Zhong & Zhicai Juan & Fang Zong & Huishuang Su, 2018. "Hierarchical hub location model and hybrid algorithm for integration of urban and rural public transport," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    9. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    10. Galvao, Roberto D. & Acosta Espejo, Luis Gonzalo & Boffey, Brian, 2002. "A hierarchical model for the location of perinatal facilities in the municipality of Rio de Janeiro," European Journal of Operational Research, Elsevier, vol. 138(3), pages 495-517, May.
    11. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    12. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    13. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    14. Zhengna Song & Tinggan Yan & Yunjian Ge, 2018. "Spatial Equilibrium Allocation of Urban Large Public General Hospitals Based on the Welfare Maximization Principle: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    15. Vladimir Marianov & Daniel Serra, 2009. "Median problems in networks," Economics Working Papers 1151, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Hüseyin Güden, 2021. "New complexity results for the p-hub median problem," Annals of Operations Research, Springer, vol. 298(1), pages 229-247, March.
    17. Widener, Michael J. & Horner, Mark W., 2011. "A hierarchical approach to modeling hurricane disaster relief goods distribution," Journal of Transport Geography, Elsevier, vol. 19(4), pages 821-828.
    18. Guerriero, Francesca & Miglionico, Giovanna & Olivito, Filomena, 2016. "Location and reorganization problems: The Calabrian health care system case," European Journal of Operational Research, Elsevier, vol. 250(3), pages 939-954.
    19. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    20. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:9:d:10.1057_s41274-017-0240-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.