IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0249136.html
   My bibliography  Save this article

Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields

Author

Listed:
  • Ephrem Habyarimana
  • Faheem S Baloch

Abstract

Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of absorbed photosynthetically active radiation (fAPAR), chlorophyll concentration (CI) and normalized difference vegetation (NDVI) indices were used in crop monitoring, but their comparative performances in sorghum monitoring is lacking. This work aimed therefore at closing this gap by evaluating the performance of machine learning modelling of in-season sorghum biomass yields based on Sentinel-2-derived fAPAR and simpler high-throughput optical handheld meters-derived NDVI and CI calculated from sorghum plants reflectance. Bayesian ridge regression showed good cross-validated performance, and high reliability (R2 = 35%) and low bias (mean absolute prediction error, MAPE = 0.4%) during the validation step. Hand-held optical meter-derived CI and Sentinel-2-derived fAPAR showed comparable effects on machine learning performance, but CI outperformed NDVI and was therefore considered as a good alternative to Sentinel-2’s fAPAR. The best times to sample the vegetation indices were the months of June (second half) and July. The results obtained in this work will serve several purposes including improvements in plant breeding, farming management and sorghum biomass yield forecasting at extension services and policy making levels.

Suggested Citation

  • Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0249136
    DOI: 10.1371/journal.pone.0249136
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249136
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249136&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0249136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Sanaz Shafian & Nithya Rajan & Ronnie Schnell & Muthukumar Bagavathiannan & John Valasek & Yeyin Shi & Jeff Olsenholler, 2018. "Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-15, May.
    3. Andrius Vabalas & Emma Gowen & Ellen Poliakoff & Alexander J Casson, 2019. "Machine learning algorithm validation with a limited sample size," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-20, November.
    4. Jones, J. W. & Keating, B. A. & Porter, C. H., 2001. "Approaches to modular model development," Agricultural Systems, Elsevier, vol. 70(2-3), pages 421-443.
    5. Vuolo, Francesco & D’Urso, Guido & De Michele, Carlo & Bianchi, Biagio & Cutting, Michael, 2015. "Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia," Agricultural Water Management, Elsevier, vol. 147(C), pages 82-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    6. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    7. Ying-Jung Chen & Joseph McFadden & Keith Clarke & Dar Roberts, 2015. "Measuring Spatio-temporal Trends in Residential Landscape Irrigation Extent and Rate in Los Angeles, California Using SPOT-5 Satellite Imagery," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5749-5763, December.
    8. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    9. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    10. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    13. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    14. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    15. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    17. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    18. Leandro C. Hermida & E. Michael Gertz & Eytan Ruppin, 2022. "Predicting cancer prognosis and drug response from the tumor microbiome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Jonathan C. M. Wan & Dennis Stephens & Lingqi Luo & James R. White & Caitlin M. Stewart & Benoît Rousseau & Dana W. Y. Tsui & Luis A. Diaz, 2022. "Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0249136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.