IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225696.html
   My bibliography  Save this article

Hidden dynamics of soccer leagues: The predictive ‘power’ of partial standings

Author

Listed:
  • Clive B Beggs
  • Alexander J Bond
  • Stacey Emmonds
  • Ben Jones

Abstract

Objectives: Soccer leagues reflect the partial standings of the teams involved after each round of competition. However, the ability of partial league standings to predict end-of-season position has largely been ignored. Here we analyze historical partial standings from English soccer to understand the mathematics underpinning league performance and evaluate the predictive ‘power’ of partial standings. Methods: Match data (1995–2017) from the four senior English leagues was analyzed, together with random match scores generated for hypothetical leagues of equivalent size. For each season the partial standings were computed and Kendall’s normalized tau-distance and Spearman r-values determined. Best-fit power-law and logarithmic functions were applied to the respective tau-distance and Spearman curves, with the ‘goodness-of-fit’ assessed using the R2 value. The predictive ability of the partial standings was evaluated by computing the transition probabilities between the standings at rounds 10, 20 and 30 and the final end-of-season standings for the 22 seasons. The impact of reordering match fixtures was also evaluated. Results: All four English leagues behaved similarly, irrespective of the teams involved, with the tau-distance conforming closely to a power law (R2>0.80) and the Spearman r-value obeying a logarithmic function (R2>0.87). The randomized leagues also conformed to a power-law, but had a different shape. In the English leagues, team position relative to end-of-season standing became ‘fixed’ much earlier in the season than was the case with the randomized leagues. In the Premier League, 76.9% of the variance in the final standings was explained by round-10, 87.0% by round-20, and 93.9% by round-30. Reordering of match fixtures appeared to alter the shape of the tau-distance curves. Conclusions: All soccer leagues appear to conform to mathematical laws, which constrain the league standings as the season progresses. This means that partial standings can be used to predict end-of-season league position with reasonable accuracy.

Suggested Citation

  • Clive B Beggs & Alexander J Bond & Stacey Emmonds & Ben Jones, 2019. "Hidden dynamics of soccer leagues: The predictive ‘power’ of partial standings," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-28, December.
  • Handle: RePEc:plo:pone00:0225696
    DOI: 10.1371/journal.pone.0225696
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225696
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225696&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    2. Seungkyu Shin & Sebastian E Ahnert & Juyong Park, 2014. "Ranking Competitors Using Degree-Neutralized Random Walks," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-13, December.
    3. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630.
    4. Andreas Heuer & Oliver Rubner, 2012. "How Does the Past of a Soccer Match Influence Its Future? Concepts and Statistical Analysis," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    5. Clive B Beggs & Simon J Shepherd & Stacey Emmonds & Ben Jones, 2017. "A novel application of PageRank and user preference algorithms for assessing the relative performance of track athletes in competition," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-26, June.
    6. Andreas Heuer & Christian Müller & Oliver Rubner & Norbert Hagemann & Bernd Strauss, 2011. "Usefulness of Dismissing and Changing the Coach in Professional Soccer," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-7, March.
    7. Mease D., 2003. "A Penalized Maximum Likelihood Approach for the Ranking of College Football Teams Independent of Victory Margins," The American Statistician, American Statistical Association, vol. 57, pages 241-248, November.
    8. Burer Samuel, 2012. "Robust Rankings for College Football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    2. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    3. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    4. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    5. Ian G. McHale & Philip A. Scarf & David E. Folker, 2012. "On the Development of a Soccer Player Performance Rating System for the English Premier League," Interfaces, INFORMS, vol. 42(4), pages 339-351, August.
    6. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    7. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    8. Tomi Ovaska & Albert J. Sumell, 2014. "Who Has The Advantage? An Economic Exploration of Winning in Men's Professional Tennis," The American Economist, Sage Publications, vol. 59(1), pages 34-51, May.
    9. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    10. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    11. Ramirez, Philip & Reade, J. James & Singleton, Carl, 2023. "Betting on a buzz: Mispricing and inefficiency in online sportsbooks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1413-1423.
    12. Irons David J. & Buckley Stephen & Paulden Tim, 2014. "Developing an improved tennis ranking system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 1-10, June.
    13. Halkos, George & Tzeremes, Nickolaos, 2012. "Evaluating professional tennis players’ career performance: A Data Envelopment Analysis approach," MPRA Paper 41516, University Library of Munich, Germany.
    14. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    15. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    16. Kovalchik Stephanie Ann, 2016. "Is there a Pythagorean theorem for winning in tennis?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 43-49, March.
    17. Stijn Baert & Simon Amez, 2018. "No better moment to score a goal than just before half time? A soccer myth statistically tested," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    18. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
    19. Ruud H. Koning & Ian G. McHale, 2012. "Estimating Match and World Cup Winning Probabilities," Chapters, in: Wolfgang Maennig & Andrew Zimbalist (ed.), International Handbook on the Economics of Mega Sporting Events, chapter 11, Edward Elgar Publishing.
    20. Bozóki, Sándor & Csató, László & Temesi, József, 2016. "An application of incomplete pairwise comparison matrices for ranking top tennis players," European Journal of Operational Research, Elsevier, vol. 248(1), pages 211-218.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.