IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0222448.html
   My bibliography  Save this article

Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis

Author

Listed:
  • Yuhua Zheng
  • Shiqi Li
  • Shuangshuang Xu

Abstract

China’s transport sector is facing enormous challenges from soaring energy consumption and greenhouse gas (GHG) emissions. Transport electrification has been viewed as a major solution to transportation decarbonization, and electric vehicles (EVs) have attracted considerable attention from policymakers. This paper analyzes the effects of the introduction of EVs in China. A system dynamics model is developed and applied to assess the energy-saving and emission-reducing impacts of the projected penetration of EVs until the year 2030. Five types of scenarios of various EV penetration rates, electricity generation mixes, and the speed of technological improvement are discussed. Results confirm that reductions in transport GHG emissions and gasoline and diesel consumption by 3.0%–16.2%, 4.4%–16.1%, and 15.8%–34.3%, respectively, will be achieved by 2030 under China’s projected EV penetration scenarios. Results also confirm that if EV penetration is accompanied by decarbonized electricity generation, that is, the use of 55% coal by 2030, then total transport GHG emissions will be further reduced by 0.8%–4.4%. Moreover, further reductions of GHG emissions of up to 5.6% could be achieved through technological improvement. The promotion of EVs could substantially affect the reduction of transport GHG emissions in China, despite the uncertainty of the influence intensity, which is dependent on the penetration rate of EVs, the decarbonization of the power sector, and the technological improvement efficiency of EVs and internal combustion engine vehicles.

Suggested Citation

  • Yuhua Zheng & Shiqi Li & Shuangshuang Xu, 2019. "Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0222448
    DOI: 10.1371/journal.pone.0222448
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222448
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0222448&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0222448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    2. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    3. Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
    4. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    5. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    6. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    7. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    8. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    9. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    10. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & Jiang, Shuhua & Hao, Han, 2017. "Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China," Applied Energy, Elsevier, vol. 204(C), pages 1399-1411.
    11. Trost, Tobias & Sterner, Michael & Bruckner, Thomas, 2017. "Impact of electric vehicles and synthetic gaseous fuels on final energy consumption and carbon dioxide emissions in Germany based on long-term vehicle fleet modelling," Energy, Elsevier, vol. 141(C), pages 1215-1225.
    12. Zheng, Yuhua & Luo, Dongkun, 2013. "Industrial structure and oil consumption growth path of China: Empirical evidence," Energy, Elsevier, vol. 57(C), pages 336-343.
    13. Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    2. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    3. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    4. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    6. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    7. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    8. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    9. Sónia Almeida Neves & António Cardoso Marques & José Alberto Fuinhas, 2018. "Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 23-40, December.
    10. Kiyotoshi Kou & Yi Dou & Ichiro Arai, 2024. "Analysis of the Forces Driving Public Hospitals’ Operating Costs Using LMDI Decomposition: The Case of Japan," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    11. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    12. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    13. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    14. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    15. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    16. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    17. Xu Hu & Jinwei Sun & Yisong Chen & Qiu Liu & Liang Gu, 2019. "Considering Well-to-Wheels Analysis in Control Design: Regenerative Suspension Helps to Reduce Greenhouse Gas Emissions from Battery Electric Vehicles," Energies, MDPI, vol. 12(13), pages 1-19, July.
    18. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    19. Wu, Ya & Zhu, Qianwen & Zhong, Ling & Zhang, Tao, 2019. "Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 349-360.
    20. Forrest, Kate & Mac Kinnon, Michael & Tarroja, Brian & Samuelsen, Scott, 2020. "Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy duty sectors in California," Applied Energy, Elsevier, vol. 276(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0222448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.