IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0216318.html
   My bibliography  Save this article

Time dynamics and invariant subnetwork structures in the world cereals trade network

Author

Listed:
  • Marie-Cécile Dupas
  • José Halloy
  • Petros Chatzimpiros

Abstract

The development of industrial agriculture has enabled a sharp increase in food trade at the global scale. Worldwide trade underpins food security by distributing food surpluses to food deficient countries. The study of agricultural product flows can provide insights on the complex interactions between exporting and importing countries and the resulting network structures. Commercial partnerships between countries can be modelled using a complex network approach. Based on the detailed trade matrices from FAO covering the period from 1986 to 2013, we present an analysis of the world cereal trade in terms of weighted and directed networks. The network nodes are the countries and the links are the trades of agricultural products in mass. We reveal the changing topology and degree distribution of the world network during the studied period. We distinguish three entangled subnetwork structures when considering the temporal stability of the trades. The three subnetworks display distinct properties and a differential contribution in total trade. Trades of uninterrupted activity over the 28-year study period compose the backbone network which accounts for two thirds of all traded mass and is scale-free. Inversely, two thirds of the trades only have one or two consecutive years of activity and define the transient subnetwork which displays random growth and accounts for very little traded mass. The trades of intermediate duration display an exponential growth both in numbers and in traded mass and define the intermediate subnetwork. The topology of each subnetwork is a time invariant. The identification of invariant structures is a useful basis for developing prospective agri-food network modelling to assess their resilience to perturbations and shocks.

Suggested Citation

  • Marie-Cécile Dupas & José Halloy & Petros Chatzimpiros, 2019. "Time dynamics and invariant subnetwork structures in the world cereals trade network," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0216318
    DOI: 10.1371/journal.pone.0216318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0216318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0216318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Knick Harley, C., 1980. "Transportation, the world wheat trade, and the Kuznets Cycle, 1850-1913," Explorations in Economic History, Elsevier, vol. 17(3), pages 218-250, July.
    2. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    3. De Benedictis Luca & Nenci Silvia & Santoni Gianluca & Tajoli Lucia & Vicarelli Claudio, 2014. "Network Analysis of World Trade using the BACI-CEPII Dataset," Global Economy Journal, De Gruyter, vol. 14(3-4), pages 1-57, October.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    5. Deng, Weibing & Li, Wei & Cai, Xu & Wang, Qiuping A., 2011. "The exponential degree distribution in complex networks: Non-equilibrium network theory, numerical simulation and empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(8), pages 1481-1485.
    6. Sartori, Martina & Schiavo, Stefano, 2015. "Connected we stand: A network perspective on trade and global food security," Food Policy, Elsevier, vol. 57(C), pages 114-127.
    7. Megan Konar & Xiaowen Lin & Benjamin Ruddell & Murugesu Sivapalan, 2018. "Scaling properties of food flow networks," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    8. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    9. Miina Porkka & Matti Kummu & Stefan Siebert & Olli Varis, 2013. "From Food Insufficiency towards Trade Dependency: A Historical Analysis of Global Food Availability," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trucmel Irina-Maria & Vintila Alexandra, 2023. "An Assessment of the Russo-Ukrainian Conflict on the European Cereal Exports Using Network Theory," Journal of Social and Economic Statistics, Sciendo, vol. 12(1), pages 46-62, July.
    2. Tingting Zhang & Ju Yang, 2023. "Factors influencing the global agricultural trade: A network analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(9), pages 343-357.
    3. Bai, Xiao & Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Vilela, André L.M. & Ghadimi, Pezhman & Yao, Cuiyou & Stanley, H. Eugene & Xu, Huji, 2022. "Most influential countries in the international medical device trade: Network-based analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. E. Gutiérrez-Moya & B. Adenso-Díaz & S. Lozano, 2021. "Analysis and vulnerability of the international wheat trade network," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(1), pages 113-128, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    2. Traverso, Silvio & Schiavo, Stefano, 2020. "Fair trade or trade fair? International food trade and cross-border macronutrient flows," World Development, Elsevier, vol. 132(C).
    3. João Amador & Sónia Cabral, 2017. "Networks of Value-added Trade," The World Economy, Wiley Blackwell, vol. 40(7), pages 1291-1313, July.
    4. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    5. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Xinyi Li & Xiong Wang & Xiaoqing Song, 2021. "Impacts of Agricultural Capitalization on Regional Paddy Field Change: A Production-Factor Substitution Perspective," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    7. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    8. Min Yang & Quan Long & Wenli Li & Zhichao Wang & Xinhua He & Jie Wang & Xiaozhong Wang & Huaye Xiong & Chaoyi Guo & Guancheng Zhang & Bin Luo & Jun Qiu & Xinping Chen & Fusuo Zhang & Xiaojun Shi & Yue, 2020. "Mapping the Environmental Cost of a Typical Citrus-Producing County in China: Hotspot and Optimization," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    9. Wenli Qiang & Shuwen Niu & Xiang Wang & Cuiling Zhang & Aimin Liu & Shengkui Cheng, 2019. "Evolution of the Global Agricultural Trade Network and Policy Implications for China," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    10. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    11. Vassilis Aschonitis & Christos G. Karydas & Miltos Iatrou & Spiros Mourelatos & Irini Metaxa & Panagiotis Tziachris & George Iatrou, 2019. "An Integrated Approach to Assessing the Soil Quality and Nutritional Status of Large and Long-Term Cultivated Rice Agro-Ecosystems," Agriculture, MDPI, vol. 9(4), pages 1-25, April.
    12. Christophe Lecarpentier & Loïc Pagès & Céline Richard-Molard, 2021. "Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-19, May.
    13. Yu, Wenjia & Yue, Yaojie & Wang, Fangxiong, 2022. "The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain," Agricultural Systems, Elsevier, vol. 196(C).
    14. Qiang, Wenli & Niu, Shuwen & Liu, Aimin & Kastner, Thomas & Bie, Qiang & Wang, Xiang & Cheng, Shengkui, 2020. "Trends in global virtual land trade in relation to agricultural products," Land Use Policy, Elsevier, vol. 92(C).
    15. Sieglinde Snapp & Tek Bahadur Sapkota & Jordan Chamberlin & Cindy Marie Cox & Samuel Gameda & Mangi Lal Jat & Paswel Marenya & Khondoker Abdul Mottaleb & Christine Negra & Kalimuthu Senthilkumar & Tes, 2023. "Spatially differentiated nitrogen supply is key in a global food–fertilizer price crisis," Nature Sustainability, Nature, vol. 6(10), pages 1268-1278, October.
    16. Rodolfo Metulini & Stefania Tamea & Francesco Laio & Massimo Riccaboni, 2016. "The Water Suitcase of Migrants: Assessing Virtual Water Fluxes Associated to Human Migration," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-13, April.
    17. Long Liang & Bradley G. Ridoutt & Liyuan Wang, 2021. "Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    18. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013," Post-Print hal-02999180, HAL.
    19. Sergio René Araujo‐Enciso & Thomas Fellmann, 2020. "Yield Variability and Harvest Failures in Russia, Ukraine and Kazakhstan and Their Possible Impact on Food Security in the Middle East and North Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(2), pages 493-516, June.
    20. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2020. "An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty," Agricultural Water Management, Elsevier, vol. 238(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0216318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.