IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0121221.html
   My bibliography  Save this article

Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts

Author

Listed:
  • Patrik J G Henriksson
  • Reinout Heijungs
  • Hai M Dao
  • Lam T Phan
  • Geert R de Snoo
  • Jeroen B Guinée

Abstract

In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product’s lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products’ environmental performance.

Suggested Citation

  • Patrik J G Henriksson & Reinout Heijungs & Hai M Dao & Lam T Phan & Geert R de Snoo & Jeroen B Guinée, 2015. "Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-11, March.
  • Handle: RePEc:plo:pone00:0121221
    DOI: 10.1371/journal.pone.0121221
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121221
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121221&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0121221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher L. Weber, 2012. "Uncertainty and Variability in Product Carbon Footprinting," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 203-211, April.
    2. Edgar G. Hertwich & James K. Hammitt & William S. Pease, 2000. "A Theoretical Foundation for Life‐Cycle Assessment: Recognizing the Role of Values in Environmental Decision Making," Journal of Industrial Ecology, Yale University, vol. 4(1), pages 13-28, January.
    3. João Malça & Fausto Freire, 2010. "Uncertainty Analysis in Biofuel Systems," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 322-334, March.
    4. Geoffrey Beattie, 2012. "Psychological effectiveness of carbon labelling," Nature Climate Change, Nature, vol. 2(4), pages 214-217, April.
    5. Tuomas Mattila & Marjukka Kujanpää & Helena Dahlbo & Risto Soukka & Tuuli Myllymaa, 2011. "Uncertainty and Sensitivity in the Carbon Footprint of Shopping Bags," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 217-227, April.
    6. Shannon M. Lloyd & Robert Ries, 2007. "Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 161-179, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomás Marín & Jing Wu & Xu Wu & Zimin Ying & Qiaoling Lu & Yiyuan Hong & Xiaoyan Wang & Wu Yang, 2019. "Resource Use in Mariculture: A Case Study in Southeastern China," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    2. Anne‐Marie Boulay & Pascal Lesage & Ben Amor & Stephan Pfister, 2021. "Quantifying uncertainty for AWARE characterization factors," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1588-1601, December.
    3. Nhu, Trang T. & Le, Quan H. & Heide, Peter ter & Bosma, Roel & Sorgeloos, Patrick & Dewulf, Jo & Schaubroeck, Thomas, 2016. "Inferred equations for predicting cumulative exergy extraction throughout cradle-to-gate life cycles of Pangasius feeds and intensive Pangasius grow-out farms in Vietnam," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 42-49.
    4. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.
    5. Andrew Berardy & Carol S. Johnston & Alexandra Plukis & Maricarmen Vizcaino & Christopher Wharton, 2019. "Integrating Protein Quality and Quantity with Environmental Impacts in Life Cycle Assessment," Sustainability, MDPI, vol. 11(10), pages 1-11, May.
    6. Mu, W. & Groen, E.A. & van Middelaar, C.E. & Bokkers, E.A.M. & Hennart, S. & Stilmant, D. & de Boer, I.J.M., 2017. "Benchmarking nutrient use efficiency of dairy farms: The effect of epistemic uncertainty," Agricultural Systems, Elsevier, vol. 156(C), pages 25-33.
    7. Steffen Kiemel & Chantal Rietdorf & Maximilian Schutzbach & Robert Miehe, 2022. "How to Simplify Life Cycle Assessment for Industrial Applications—A Comprehensive Review," Sustainability, MDPI, vol. 14(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malça, João & Freire, Fausto, 2012. "Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol," Energy, Elsevier, vol. 45(1), pages 519-527.
    2. Samuele Lo Piano & Lorenzo Benini, 2022. "A critical perspective on uncertainty appraisal and sensitivity analysis in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 763-781, June.
    3. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    4. Stefano Cucurachi & Carlos Felipe Blanco & Bernhard Steubing & Reinout Heijungs, 2022. "Implementation of uncertainty analysis and moment‐independent global sensitivity analysis for full‐scale life cycle assessment models," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 374-391, April.
    5. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    6. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    7. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    9. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    10. Timo Herberz & Claire Y. Barlow & Matthias Finkbeiner, 2020. "Sustainability Assessment of a Single-Use Plastics Ban," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    11. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    12. Lien-Chieh Lee & Yuan Wang & Yuanyuan Yan & Jian Zuo, 2018. "Greenhouse Gas Emissions Embodied in the Chinese International Trade of Computer Products," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    13. Briac Baudais & Hamid Ben Ahmed & Gurvan Jodin & Nicolas Degrenne & Stéphane Lefebvre, 2023. "Life Cycle Assessment of a 150 kW Electronic Power Inverter," Energies, MDPI, vol. 16(5), pages 1-18, February.
    14. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    15. Stotz, Philippe Maurice & Niero, Monia & Bey, Niki & Paraskevas, Dimos, 2017. "Environmental screening of novel technologies to increase material circularity: A case study on aluminium cans," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 96-106.
    16. Geraldes Castanheira, Érica & Grisoli, Renata & Freire, Fausto & Pecora, Vanessa & Coelho, Suani Teixeira, 2014. "Environmental sustainability of biodiesel in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 680-691.
    17. Robert P. Anex & Will Focht, 2002. "Public Participation in Life Cycle Assessment and Risk Assessment: A Shared Need," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 861-877, October.
    18. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    19. Chun-Youl Baek & Kiyotaka Tahara & Kyu-Hyun Park, 2018. "Parameter Uncertainty Analysis of the Life Cycle Inventory Database: Application to Greenhouse Gas Emissions from Brown Rice Production in IDEA," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    20. Li, Linjun & Lu, Hongfang & Campbell, Daniel E. & Ren, Hai, 2011. "Methods for estimating the uncertainty in emergy table-form models," Ecological Modelling, Elsevier, vol. 222(15), pages 2615-2622.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0121221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.