IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0088402.html
   My bibliography  Save this article

Direct Comparison of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography for Detection of Coronary Artery Disease: A Meta-Analysis

Author

Listed:
  • Lihua Chen
  • Xiao Wang
  • Jing Bao
  • Chengjun Geng
  • Yunbao Xia
  • Jian Wang

Abstract

Objective: To use direct comparative studies or randomised controlled trials to compare the accuracy of cardiac magnetic resonance (CMR) and single-photon emission computed tomography (SPECT) for the detection of obstructive coronary artery disease (CAD). Materials and Methods: Various databases were searched for original articles published prior to June 2013. Studies were selected that performed both CMR and SPECT in the same or randomised patients to detect CAD and that presented sufficient data to allow construction of contingency tables. For each study, the true-positive, false-positive, true-negative, and false-negative values were extracted or derived, and 2×2 contingency tables were constructed. To reduce heterogeneity, the meta-analysis was carried out in two parts: (1) coronary territory-based analysis and (2) patient-based analysis. Results: 10 studies (5 studies based on patient, 4 studies based on coronary territory, and 1 study based on both) were included in the meta-analysis with a total of 1727 patients. The methodological quality was moderate. For part (1), the summary estimates were as follows: for CMR based on patient–a sensitivity of 0.79 (95% confidence interval: 0.72–0.84) and a specificity of 0.75 (0.65–0.83); for SPECT based on patient–a sensitivity of 0.70 (0.59–0.79) and a specificity of 0.76 (0.66–0.83). For part (2), the summary estimates for CMR based on coronary territory were a sensitivity of 0.80 (0.73–0.85) and a specificity of 0.87 (0.81–0.91), and the summary estimates for SPECT based on coronary territory were a sensitivity of 0.67 (0.60–0.72) and a specificity of 0.80 (0.75–0.84). Conclusions: Compared with SPECT, CMR is more sensitive to detect CAD on a per-patient basis. Nonetheless, large scale, well-designed trials are necessary to assess its clinical value on a per-coronary territory basis.

Suggested Citation

  • Lihua Chen & Xiao Wang & Jing Bao & Chengjun Geng & Yunbao Xia & Jian Wang, 2014. "Direct Comparison of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography for Detection of Coronary Artery Disease: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0088402
    DOI: 10.1371/journal.pone.0088402
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0088402
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0088402&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0088402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. מחקר - ביטוח לאומי, 2006. "Summary for 2005," Working Papers 29, National Insurance Institute of Israel.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Productivity Commission, 2006. "Review of Price Regulation of Airports Services," Inquiry Reports, Productivity Commission, Government of Australia, number 40.
    2. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    3. Bhalotra, Sonia & Clarke, Damian & Mühlrad, Hanna & Palme, Mårten, 2021. "Health and Labor Market Impacts of Twin Birth : Evidence from a Swedish IVF Policy Mandate," The Warwick Economics Research Paper Series (TWERPS) 1391, University of Warwick, Department of Economics.
    4. N. N., 2005. "60th Euroconstruct Conference: The Prospects for the European Construction Market 2006-2008. Summary Report," WIFO Studies, WIFO, number 25838, February.
    5. Lei Jin & Nicholas Chrisatakis, 2009. "Investigating the mechanism of marital mortality reduction: The transition to widowhood and quality of health care," Demography, Springer;Population Association of America (PAA), vol. 46(3), pages 605-625, August.
    6. Ankit Gupta & Hemant Bherwani & Sneha Gautam & Saima Anjum & Kavya Musugu & Narendra Kumar & Avneesh Anshul & Rakesh Kumar, 2021. "Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6408-6417, April.
    7. Bureau for Food and Agricultural Policy, 2015. "The South African Sunflower Complex," BFAP Reports 279776, Bureau for Food and Agricultural Policy (BFAP), BFAP Reports.
    8. Ellen Bouchery & Rebecca Morris & Jasmine Little, "undated". "Examining Substance Use Disorder Treatment Demand and Provider Capacity in a Changing Health Care System: Initial Findings Report," Mathematica Policy Research Reports b0d83ca544284ee7a053b2788, Mathematica Policy Research.
    9. Sun-Jin Yun, 2012. "Nuclear power for climate mitigation? Contesting frames in Korean newspapers," Asia Europe Journal, Springer, vol. 10(1), pages 57-73, May.
    10. Hristovska, Tatjana & Watkins, K. Bradley & Anders, Merle M., 2012. "An Economic Risk Analysis of No-till Management for the Rice-Soybean Rotation System used in Arkansas," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119676, Southern Agricultural Economics Association.
    11. International Monetary Fund, 2008. "The Gambia: Selected Issues and Statistical Appendix," IMF Staff Country Reports 2008/325, International Monetary Fund.
    12. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    13. Alexa Spence & Wouter Poortinga & Nick Pidgeon, 2012. "The Psychological Distance of Climate Change," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 957-972, June.
    14. Crouse, Dan L. & Ross, Nancy A. & Goldberg, Mark S., 2009. "Double burden of deprivation and high concentrations of ambient air pollution at the neighbourhood scale in Montreal, Canada," Social Science & Medicine, Elsevier, vol. 69(6), pages 971-981, September.
    15. Watkins, K. Bradley & Hignight, Jeffrey A. & Anders, Merle M., 2011. "The Impacts of Farm Size and Economic Risk on No-Till Rice Whole-Farm Profitability," 2011 Annual Meeting, February 5-8, 2011, Corpus Christi, Texas 98733, Southern Agricultural Economics Association.
    16. Schepelmann, Philipp & Goossens, Yanne & Makipaa, Arttu (ed.), 2009. "Towards sustainable development: Alternatives to GDP for measuring progress," Wuppertal Spezial, Wuppertal Institute for Climate, Environment and Energy, volume 42, number 42.
    17. Caplan, Arthur J. & Acharya, Ramjee, 2019. "Optimal vehicle use in the presence of episodic mobile-source air pollution," Resource and Energy Economics, Elsevier, vol. 57(C), pages 185-204.
    18. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    19. Emek Basker & Javier Miranda, 2014. "Taken by Storm: Business Financing, Survival, and Contagion in the Aftermath of Hurricane Katrina," Working Papers 1406, Department of Economics, University of Missouri, revised 23 Oct 2014.
    20. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0088402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.