IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003945.html
   My bibliography  Save this article

Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas

Author

Listed:
  • Flávio L Pinheiro
  • Vítor V Vasconcelos
  • Francisco C Santos
  • Jorge M Pacheco

Abstract

Many problems of cooperation involve repeated interactions among the same groups of individuals. When collective action is at stake, groups often engage in Public Goods Games (PGG), where individuals contribute (or not) to a common pool, subsequently sharing the resources. Such scenarios of repeated group interactions materialize situations in which direct reciprocation to groups may be at work. Here we study direct group reciprocity considering the complete set of reactive strategies, where individuals behave conditionally on what they observed in the previous round. We study both analytically and by computer simulations the evolutionary dynamics encompassing this extensive strategy space, witnessing the emergence of a surprisingly simple strategy that we call All-Or-None (AoN). AoN consists in cooperating only after a round of unanimous group behavior (cooperation or defection), and proves robust in the presence of errors, thus fostering cooperation in a wide range of group sizes. The principles encapsulated in this strategy share a level of complexity reminiscent of that found already in 2-person games under direct and indirect reciprocity, reducing, in fact, to the well-known Win-Stay-Lose-Shift strategy in the limit of the repeated 2-person Prisoner's Dilemma.Author Summary: The problem of cooperation has been a target of many studies, and some of the most complex dilemmas arise when we deal with groups repeatedly interacting by means of a Public Goods Game (PGG), where individuals may contribute to a common pool, subsequently sharing the resources. Here we study generalized direct group reciprocity by incorporating the complete set of reactive strategies, where action is dictated by what happened in the previous round. We compute the pervasiveness in time of each possible reactive strategy, and find a ubiquitous strategy profile that prevails throughout evolution, independently of group size and specific PGG parameters, proving also robust in the presence of errors. This strategy, that we call All-Or-None (AoN), consists in cooperating only after a round of unanimous group behavior (cooperation or defection); not only is it conceptually very simple, it also ensures that cooperation can self-sustain in a population. AoN contains core principles found, e.g., in the repeated 2-person Prisoner's Dilemma, in which case it reduces to the famous Win-Stay-Lose-Shift strategy.

Suggested Citation

  • Flávio L Pinheiro & Vítor V Vasconcelos & Francisco C Santos & Jorge M Pacheco, 2014. "Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-5, November.
  • Handle: RePEc:plo:pcbi00:1003945
    DOI: 10.1371/journal.pcbi.1003945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003945
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    3. Imhof, Lorens & Nowak, Martin & Fudenberg, Drew, 2007. "Tit-for-Tat or Win-Stay, Lose-Shift?," Scholarly Articles 3200671, Harvard University Department of Economics.
    4. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    5. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    6. Vítor V. Vasconcelos & Francisco C. Santos & Jorge M. Pacheco, 2013. "A bottom-up institutional approach to cooperative governance of risky commons," Nature Climate Change, Nature, vol. 3(9), pages 797-801, September.
    7. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
    8. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    9. Martin Posch, 1997. "Win Stay---Lose Shift: An Elementary Learning Rule for Normal Form Games," Research in Economics 97-06-056e, Santa Fe Institute.
    10. Fudenberg, Drew & Maskin, Eric, 1990. "Evolution and Cooperation in Noisy Repeated Games," American Economic Review, American Economic Association, vol. 80(2), pages 274-279, May.
    11. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Dong & Cong Li & Yi Tao & Boyu Zhang, 2015. "Evolution of Conformity in Social Dilemmas," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.
    2. Mohammad Salahshour, 2021. "Freedom to choose between public resources promotes cooperation," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    3. Miloslav Machoň, 2017. "Global Public Goods: The Case for the Global Earth Observation System of Systems [Globální veřejný statek na příkladu Systému systémů globálního pozorování Země]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2017(3), pages 68-83.
    4. Xiaofeng Wang, 2021. "Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game," Dynamic Games and Applications, Springer, vol. 11(1), pages 161-183, March.
    5. Fernando P Santos & Francisco C Santos & Jorge M Pacheco, 2016. "Social Norms of Cooperation in Small-Scale Societies," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-13, January.
    6. Boyu Zhang & Yali Dong & Cheng-Zhong Qin & Sergey Gavrilets, 2023. "Kinship can hinder cooperation in heterogeneous populations," Papers 2305.19026, arXiv.org, revised Jun 2023.
    7. Shuhua Chang & Zhipeng Zhang & Yu Li & Yu E Wu & Yunya Xie, 2018. "Investment preference promotes cooperation in spatial public goods game," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    8. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2023. "Evolution of cooperation with nonlinear environment feedback in repeated public goods game," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    9. Maria Kleshnina & Christian Hilbe & Štěpán Šimsa & Krishnendu Chatterjee & Martin A. Nowak, 2023. "The effect of environmental information on evolution of cooperation in stochastic games," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    2. Julián García & Arne Traulsen, 2012. "The Structure of Mutations and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    3. Chen, Yunong & Belmonte, Andrew & Griffin, Christopher, 2021. "Imitation of success leads to cost of living mediated fairness in the Ultimatum Game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    5. Floriana Gargiulo & José J Ramasco, 2012. "Influence of Opinion Dynamics on the Evolution of Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    6. Xiaojie Chen & Attila Szolnoki, 2018. "Punishment and inspection for governing the commons in a feedback-evolving game," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-15, July.
    7. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    8. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Chang, Shuhua & Zhang, Zhipeng & Wu, Yu’e & Xie, Yunya, 2018. "Cooperation is enhanced by inhomogeneous inertia in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 419-425.
    10. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    11. Qu, Xinglong & Zhou, Changli & Cao, Zhigang & Yang, Xiaoguang, 2016. "Conditional dissociation as a punishment mechanism in the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 215-223.
    12. Nazaria Solferino & Viviana Solferino & Serena F. Taurino, 2018. "The economics analysis of a Q-learning model of cooperation with punishment and risk taking preferences," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 601-613, October.
    13. Zhu, Wenqiang & Pan, Qiuhui & Song, Sha & He, Mingfeng, 2023. "Effects of exposure-based reward and punishment on the evolution of cooperation in prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Zhang, Huanren, 2018. "Errors can increase cooperation in finite populations," Games and Economic Behavior, Elsevier, vol. 107(C), pages 203-219.
    15. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Deng, Kuiying & Li, Zhuozheng & Kurokawa, Shun & Chu, Tianguang, 2012. "Rare but severe concerted punishment that favors cooperation," Theoretical Population Biology, Elsevier, vol. 81(4), pages 284-291.
    17. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    18. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.
    19. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    20. Dario Madeo & Chiara Mocenni, 2018. "Self-regulation promotes cooperation in social networks," Papers 1807.07848, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.