IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v68y2017i7d10.1057_jors.2016.42.html
   My bibliography  Save this article

Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach

Author

Listed:
  • Hashem Omrani

    (Urmia University of Technology)

  • Farzane Adabi

    (Urmia University of Technology)

  • Narges Adabi

    (Tabriz Islamic Art University)

Abstract

Designing a supply chain network (SCN) is an important issue for organizations in competitive markets. In this paper, a novel robust SCN that considers the efficiencies and costs simultaneously is proposed. In order to estimate the efficiency of the producers and distributors, data envelopment analysis (DEA) model is incorporated into SCN. Moreover, to handle the uncertainty in data, a scenario-based robust optimization approach is applied. The proposed model finds out the efficient location of producers and distributors and determines the amount of purchases from each supplier in uncertain conditions. To illustrate the application of the proposed model, a numerical example is solved and results are analyzed.

Suggested Citation

  • Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
  • Handle: RePEc:pal:jorsoc:v:68:y:2017:i:7:d:10.1057_jors.2016.42
    DOI: 10.1057/jors.2016.42
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2016.42
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2016.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Plas, C. & Tervonen, T. & Dekker, R., 2012. "Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design," Econometric Institute Research Papers EI2012-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Sabri, Ehap H. & Beamon, Benita M., 2000. "A multi-objective approach to simultaneous strategic and operational planning in supply chain design," Omega, Elsevier, vol. 28(5), pages 581-598, October.
    3. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    6. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    7. Marcus Porembski & Kristina Breitenstein & Paul Alpar, 2005. "Visualizing Efficiency and Reference Relations in Data Envelopment Analysis with an Application to the Branches of a German Bank," Journal of Productivity Analysis, Springer, vol. 23(2), pages 203-221, May.
    8. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    9. Erol, Ismail & Ferrell, W.G.William Jr., 2004. "A methodology to support decision making across the supply chain of an industrial distributor," International Journal of Production Economics, Elsevier, vol. 89(2), pages 119-129, May.
    10. Georgiadis, Michael C. & Tsiakis, Panagiotis & Longinidis, Pantelis & Sofioglou, Maria K., 2011. "Optimal design of supply chain networks under uncertain transient demand variations," Omega, Elsevier, vol. 39(3), pages 254-272, June.
    11. Pan, Feng & Nagi, Rakesh, 2013. "Multi-echelon supply chain network design in agile manufacturing," Omega, Elsevier, vol. 41(6), pages 969-983.
    12. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    13. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    14. Thomas, Peter & Chan, Yupo & Lehmkuhl, Lee & Nixon, William, 2002. "Obnoxious-facility location and data-envelopment analysis: A combined distance-based formulation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 495-514, September.
    15. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2012. "A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon," International Journal of Production Economics, Elsevier, vol. 136(1), pages 218-230.
    16. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    17. Sarrico, C. S. & Dyson, R. G., 2004. "Restricting virtual weights in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 159(1), pages 17-34, November.
    18. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    19. Yao Chen & Liang Liang & Feng Yang, 2006. "A DEA game model approach to supply chain efficiency," Annals of Operations Research, Springer, vol. 145(1), pages 5-13, July.
    20. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    2. Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
    3. Sebastian Lozano & Belarmino Adenso-Diaz, 2018. "Network DEA-based biobjective optimization of product flows in a supply chain," Annals of Operations Research, Springer, vol. 264(1), pages 307-323, May.
    4. Aneirson Francisco Silva & Fernando Augusto S. Marins & Erica Ximenes Dias, 2020. "Improving the discrimination power with a new multi-criteria data envelopment model," Annals of Operations Research, Springer, vol. 287(1), pages 127-159, April.
    5. Ardavan Babaei & Majid Khedmati & Mohammad Reza Akbari Jokar & Erfan Babaee Tirkolaee, 2022. "Performance Evaluation of Omni-Channel Distribution Network Configurations considering Green and Transparent Criteria under Uncertainty," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    6. Ardavan Babaei & Majid Khedmati & Mohammad Reza Akbari Jokar, 2023. "A new branch and efficiency algorithm for an optimal design of the supply chain network in view of resilience, inequity and traffic congestion," Annals of Operations Research, Springer, vol. 321(1), pages 49-78, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    2. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    3. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    4. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    5. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    6. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    7. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    8. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    9. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    10. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    11. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    12. Ismail I. Almaraj & Theodore B. Trafalis, 2022. "A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production," Annals of Operations Research, Springer, vol. 319(2), pages 1479-1505, December.
    13. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    14. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    15. Shuihua Han & Yue Jiang & Ling Zhao & Stephen C. H. Leung & Zongwei Luo, 2020. "Weight reduction technology and supply chain network design under carbon emission restriction," Annals of Operations Research, Springer, vol. 290(1), pages 567-590, July.
    16. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    17. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    18. YAO, Lifei & JIN, Maozhu & REN, Peiyu & LV, Zhihan, 2016. "Robust environmental closed-loop supply chain design under uncertaintyAuthor-Name: MA, Ruimin," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 195-202.
    19. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    20. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:68:y:2017:i:7:d:10.1057_jors.2016.42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.