IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i2d10.1007_s10479-021-04286-8.html
   My bibliography  Save this article

A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production

Author

Listed:
  • Ismail I. Almaraj

    (King Fahd University of Petroleum and Minerals
    King Fahd University of Petroleum and Minerals)

  • Theodore B. Trafalis

    (University of Oklahoma)

Abstract

The closed-loop supply chain model with an assumption of perfect produced items is used commonly in the literature. We consider the imperfect quality production to provide meaningful solutions to practical problems. In this novel model, we assume that the screening is not always perfect, and inspection errors are more likely to take place in practice. The model considers multiple periods, echelons, and uncertainties. Moreover, the proposed robust multi-objective mixed integer linear programming model considers the optimization of three objectives simultaneously. The first objective function is optimized to minimize the total cost of the supply chain. The second objective function seeks to minimize the environmental influence, and the third objective function is optimized to maximize the social benefits. The augmented weighted Tchebycheff method is used to aggregate the objective functions into one objective and produce the set of efficient solutions. Robust optimization, based on the extended Mulvey et al. (1995) approach, is used to obtain a set of solutions that are robust against the future fluctuation of parameters. Finally, numerical examples have been presented to test and analyze the tradeoff between solution robustness and model robustness.

Suggested Citation

  • Ismail I. Almaraj & Theodore B. Trafalis, 2022. "A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect quality production," Annals of Operations Research, Springer, vol. 319(2), pages 1479-1505, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04286-8
    DOI: 10.1007/s10479-021-04286-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04286-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04286-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nurjanni, Kartina Puji & Carvalho, Maria S. & Costa, Lino, 2017. "Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 421-432.
    2. Kannan Govindan & P.C. Jha & Kiran Garg, 2016. "Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1463-1486, March.
    3. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    4. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    5. Miettinen, Kaisa & Makela, Marko M. & Kaario, Katja, 2006. "Experiments with classification-based scalarizing functions in interactive multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 175(2), pages 931-947, December.
    6. YAO, Lifei & JIN, Maozhu & REN, Peiyu & LV, Zhihan, 2016. "Robust environmental closed-loop supply chain design under uncertaintyAuthor-Name: MA, Ruimin," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 195-202.
    7. Lee, Chang Hwan & Rhee, Byong-Duk & Cheng, T.C.E., 2013. "Quality uncertainty and quality-compensation contract for supply chain coordination," European Journal of Operational Research, Elsevier, vol. 228(3), pages 582-591.
    8. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    9. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    10. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    2. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    3. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    4. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    5. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    6. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    7. Zahra Homayouni & Mir Saman Pishvaee & Hamed Jahani & Dmitry Ivanov, 2023. "A robust-heuristic optimization approach to a green supply chain design with consideration of assorted vehicle types and carbon policies under uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 395-435, May.
    8. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    9. Surya Prakash & Sameer Kumar & Gunjan Soni & Vipul Jain & Ajay Pal Singh Rathore, 2020. "Closed-loop supply chain network design and modelling under risks and demand uncertainty: an integrated robust optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 837-864, July.
    10. Morteza Lalmazloumian & Kuan Yew Wong & Kannan Govindan & Devika Kannan, 2016. "A robust optimization model for agile and build-to-order supply chain planning under uncertainties," Annals of Operations Research, Springer, vol. 240(2), pages 435-470, May.
    11. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    12. Salehi Sadghiani, N. & Torabi, S.A. & Sahebjamnia, N., 2015. "Retail supply chain network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 95-114.
    13. Julian Englberger & Frank Herrmann & Michael Manitz, 2016. "Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6192-6215, October.
    14. Ouhimmou, Mustapha & Nourelfath, Mustapha & Bouchard, Mathieu & Bricha, Naji, 2019. "Design of robust distribution network under demand uncertainty: A case study in the pulp and paper," International Journal of Production Economics, Elsevier, vol. 218(C), pages 96-105.
    15. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    16. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    17. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    18. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    19. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    20. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-021-04286-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.