IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i4d10.1057_palgrave.jors.2602577.html
   My bibliography  Save this article

A classification of the weighting schemes in reference point procedures for multiobjective programming

Author

Listed:
  • F Ruiz

    (University of Málaga)

  • M Luque

    (University of Málaga)

  • J M Cabello

    (University of Málaga)

Abstract

The reference point-based methods form one of the most widely used class of interactive procedures for multiobjective programming problems. The achievement scalarizing functions used to determine the solutions at each iteration usually include weights. In this paper, we have analysed nine weighting schemes from the preferential point of view, that is, examining their performance in terms of which reference values are given more importance and why. As a result, we have carried out a systematic classification of the schemes attending to their preferential meaning. This way, we distinguish pure normalizing schemes from others where the weights have a preferential interpretation. This preferential behaviour can be either designed (thus, predetermined) by the method, or decided by the decision maker. Besides, several figures have been used to illustrate the way each scheme works. This paper enables the potential users to choose the most appropriate scheme for each case.

Suggested Citation

  • F Ruiz & M Luque & J M Cabello, 2009. "A classification of the weighting schemes in reference point procedures for multiobjective programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 544-553, April.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:4:d:10.1057_palgrave.jors.2602577
    DOI: 10.1057/palgrave.jors.2602577
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602577
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    2. Miettinen, Kaisa & Makela, Marko M., 2006. "Synchronous approach in interactive multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 170(3), pages 909-922, May.
    3. K Miettinen & M M Mäkelä, 1999. "Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 949-959, September.
    4. Buchanan, John & Gardiner, Lorraine, 2003. "A comparison of two reference point methods in multiple objective mathematical programming," European Journal of Operational Research, Elsevier, vol. 149(1), pages 17-34, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano Luque & Salvador Pérez-Moreno & Beatriz Rodríguez, 2016. "Measuring Human Development: A Multi-criteria Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 125(3), pages 713-733, February.
    2. Mariano Luque & Salvador Pérez-Moreno & Beatriz Rodríguez, 2016. "Measuring Human Development: A Multi-criteria Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 125(3), pages 713-733, February.
    3. Włodzimierz Ogryczak & Bartosz Kozłowski, 2011. "Reference point method with importance weighted ordered partial achievements," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 380-401, December.
    4. Ruiz, Francisco & Cabello, José M. & Pérez-Gladish, Blanca, 2018. "Building Ease-of-Doing-Business synthetic indicators using a double reference point approach," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 130-140.
    5. Cabello, J.M. & Ruiz, F. & Pérez-Gladish, B. & Méndez-Rodríguez, P., 2014. "Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method," European Journal of Operational Research, Elsevier, vol. 236(1), pages 313-325.
    6. F Ruiz & J M Cabello & M Luque, 2011. "An application of reference point techniques to the calculation of synthetic sustainability indicators," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 189-197, January.
    7. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    8. José M. Cabello & Enrique Navarro-Jurado & Beatriz Rodríguez & Daniela Thiel-Ellul & Francisco Ruiz, 2019. "Dual weak–strong sustainability synthetic indicators using a double reference point scheme: the case of Andalucía, Spain," Operational Research, Springer, vol. 19(3), pages 757-782, September.
    9. Marcenaro-Gutierrez, O.D. & Luque, M. & Ruiz, F., 2010. "An application of multiobjective programming to the study of workers' satisfaction in the Spanish labour market," European Journal of Operational Research, Elsevier, vol. 203(2), pages 430-443, June.
    10. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    11. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    12. Navarro Jurado, E. & Tejada Tejada, M. & Almeida García, F. & Cabello González, J. & Cortés Macías, R. & Delgado Peña, J. & Fernández Gutiérrez, F. & Gutiérrez Fernández, G. & Luque Gallego, M. & Málv, 2012. "Carrying capacity assessment for tourist destinations. Methodology for the creation of synthetic indicators applied in a coastal area," Tourism Management, Elsevier, vol. 33(6), pages 1337-1346.
    13. Mariano Luque & Ana Ruiz & Rubén Saborido & Óscar Marcenaro-Gutiérrez, 2015. "On the use of the $$L_{p}$$ L p distance in reference point-based approaches for multiobjective optimization," Annals of Operations Research, Springer, vol. 235(1), pages 559-579, December.
    14. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    15. Shicheng Hu & Danping Li & Junmin Jia & Yang Liu, 2021. "A Self-Learning Based Preference Model for Portfolio Optimization," Mathematics, MDPI, vol. 9(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Kathrin Klamroth & Kaisa Miettinen, 2008. "Integrating Approximation and Interactive Decision Making in Multicriteria Optimization," Operations Research, INFORMS, vol. 56(1), pages 222-234, February.
    3. Luque, Mariano & Miettinen, Kaisa & Eskelinen, Petri & Ruiz, Francisco, 2009. "Incorporating preference information in interactive reference point methods for multiobjective optimization," Omega, Elsevier, vol. 37(2), pages 450-462, April.
    4. Luque, M. & Marcenaro-Gutiérrez, O.D. & López-Agudo, L.A., 2015. "On the potential balance among compulsory education outcomes through econometric and multiobjective programming analysis," European Journal of Operational Research, Elsevier, vol. 241(2), pages 527-540.
    5. Yadav, Deepanshu & Nagar, Deepak & Ramu, Palaniappan & Deb, Kalyanmoy, 2023. "Visualization-aided multi-criteria decision-making using interpretable self-organizing maps," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1183-1200.
    6. Ruiz, Francisco & Luque, Mariano & Miguel, Francisca & del Mar Munoz, Maria, 2008. "An additive achievement scalarizing function for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 188(3), pages 683-694, August.
    7. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    8. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    9. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "A new method for optimizing a linear function over the efficient set of a multiobjective integer program," European Journal of Operational Research, Elsevier, vol. 260(3), pages 904-919.
    10. Kirlik, Gokhan & Sayın, Serpil, 2014. "A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems," European Journal of Operational Research, Elsevier, vol. 232(3), pages 479-488.
    11. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    12. Petr Fiala & Adam Borovička, 2022. "Stock portfolio selection using aspiration level-oriented procedure: real case on the RM-SYSTEM Czech stock exchange," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 781-805, June.
    13. Resat, Hamdi G. & Turkay, Metin, 2015. "Design and operation of intermodal transportation network in the Marmara region of Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 16-33.
    14. Miettinen, Kaisa & Molina, Julián & González, Mercedes & Hernández-Díaz, Alfredo & Caballero, Rafael, 2009. "Using box indices in supporting comparison in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 197(1), pages 17-24, August.
    15. Ustun, Ozden & DemI[dot above]rtas, Ezgi Aktar, 2008. "An integrated multi-objective decision-making process for multi-period lot-sizing with supplier selection," Omega, Elsevier, vol. 36(4), pages 509-521, August.
    16. Choobineh, F. Fred & Mohebbi, Esmail & Khoo, Hansen, 2006. "A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 175(1), pages 318-337, November.
    17. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    18. Mariano Luque & Ana Ruiz & Rubén Saborido & Óscar Marcenaro-Gutiérrez, 2015. "On the use of the $$L_{p}$$ L p distance in reference point-based approaches for multiobjective optimization," Annals of Operations Research, Springer, vol. 235(1), pages 559-579, December.
    19. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    20. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:4:d:10.1057_palgrave.jors.2602577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.