IDEAS home Printed from https://ideas.repec.org/a/nse/ecosta/ecostat_2019_513_5.html
   My bibliography  Save this article

Price Elasticity of Electricity Demand in France

Author

Listed:
  • Stéphane Auray
  • Vincenzo Caponi
  • Benoît Ravel

Abstract

[eng] Competition and climate becoming more important for electricity production and consumption, market operators are increasingly interested in reliable forecasts of electricity prices and consumption for planning their investments and regulating policies. Key for good forecasts is understanding the consumers’ reaction to price changes, synthesized by the concept of elasticity. Using a unique dataset of millions of bi-annual meter readings of electricity consumption in France from 2007 to 2015, we estimate the price elasticity of electricity expenditure of private households. We propose three specifications: a canonical one that regresses electricity consumption on a price per kilowatt/hour, where we find an elasticity equal to -0.8, a result remarkably in line and corroborating previous literature; a specification that follows Filippini’s (1995) model of an Almost Ideal Demand System (AIDS), in which we substantially replicate his results; and finally, an extension of the latter that allows elasticities to be season-dependent that shows the demand of electricity being more elastic in summer.

Suggested Citation

  • Stéphane Auray & Vincenzo Caponi & Benoît Ravel, 2019. "Price Elasticity of Electricity Demand in France," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 513, pages 91-103.
  • Handle: RePEc:nse:ecosta:ecostat_2019_513_5
    DOI: https://doi.org/10.24187/ecostat.2019.513.2002
    as

    Download full text from publisher

    File URL: https://www.insee.fr/en/statistiques/fichier/4467135/ES_513_Auray_EN.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.24187/ecostat.2019.513.2002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    2. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    3. Filippini, Massimo, 1995. "Swiss residential demand for electricity by time-of-use," Resource and Energy Economics, Elsevier, vol. 17(3), pages 281-290, November.
    4. Massimo, Filippini, 2011. "Short- and long-run time-of-use price elasticities in Swiss residential electricity demand," Energy Policy, Elsevier, vol. 39(10), pages 5811-5817, October.
    5. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    6. Dergiades, Theologos & Tsoulfidis, Lefteris, 2008. "Estimating residential demand for electricity in the United States, 1965-2006," Energy Economics, Elsevier, vol. 30(5), pages 2722-2730, September.
    7. Halicioglu, Ferda, 2007. "Residential electricity demand dynamics in Turkey," Energy Economics, Elsevier, vol. 29(2), pages 199-210, March.
    8. Filippini, Massimo, 1995. "Electricity demand by time of use An application of the household AIDS model," Energy Economics, Elsevier, vol. 17(3), pages 197-204, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Crampes & Yassine Lefouili, 2021. "Green energy pricing for digital europe," Post-Print hal-03352748, HAL.
    2. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    3. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    4. Frédéric Cherbonnier & Christian Gollier, 2022. "Risk-adjusted Social Discount Rates," Post-Print hal-04012977, HAL.
    5. Stéphane AURAY & Vincent CAPONI, 2020. "A Vector Autoregressive Model of Forecast Electricity Consumption in France," Working Papers 2020-06, Center for Research in Economics and Statistics.
    6. Yang, Yuting, 2020. "Electricity Interconnection with Intermittent Renewables," TSE Working Papers 20-1075, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    2. Makena Coffman & Paul Bernstein & Sherilyn Wee & Aida Arik, 2016. "Estimating the Opportunity for Load-Shifting in Hawaii: An Analysis of Proposed Residential Time-of-Use Rates," Working Papers 2016-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    4. Fullerton Jr., Thomas M. & Macias, David R. & Walke, Adam G., 2016. "Residential Electricity Demand in El Paso," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 46(2), December.
    5. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Valeria Di Cosmo, Sean Lyons, and Anne Nolan, 2014. "Estimating the Impact of Time-of-Use Pricing on Irish Electricity Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Silva, Susana & Soares, Isabel & Pinho, Carlos, 2018. "Electricity residential demand elasticities: Urban versus rural areas in Portugal," Energy, Elsevier, vol. 144(C), pages 627-632.
    8. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    9. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    10. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    12. Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
    13. Yumin Li & Yan Jiang & Shiyuan Li, 2022. "Price and income elasticities of electricity in China: Estimation and policy implications," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S2), pages 76-90, November.
    14. Rabindra Nepal, Muhammad Indra al Irsyad, and Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects in New Zealand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. Loi, Tian Sheng Allan & Loo, Soh Leng, 2016. "The impact of Singapore’s residential electricity conservation efforts and the way forward. Insights from the bounds testing approach," Energy Policy, Elsevier, vol. 98(C), pages 735-743.
    16. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Fullerton, Thomas M. & Juarez, David A. & Walke, Adam G., 2012. "Residential electricity consumption in Seattle," Energy Economics, Elsevier, vol. 34(5), pages 1693-1699.
    18. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    19. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    20. Akihiro Otsuka, 2019. "Natural disasters and electricity consumption behavior: a case study of the 2011 Great East Japan Earthquake," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 887-910, October.

    More about this item

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:ecosta:ecostat_2019_513_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Veronique Egloff (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.