IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46979-1.html
   My bibliography  Save this article

Bat species assemblage predicts coronavirus prevalence

Author

Listed:
  • Magdalena Meyer

    (Ulm University)

  • Dominik W. Melville

    (Ulm University)

  • Heather J. Baldwin

    (Ulm University
    Macquarie University)

  • Kerstin Wilhelm

    (Ulm University)

  • Evans Ewald Nkrumah

    (Kwame Nkrumah University of Science and Technology)

  • Ebenezer K. Badu

    (Kwame Nkrumah University of Science and Technology)

  • Samuel Kingsley Oppong

    (Kwame Nkrumah University of Science and Technology)

  • Nina Schwensow

    (Ulm University)

  • Adam Stow

    (Macquarie University)

  • Peter Vallo

    (Ulm University
    Czech Academy of Sciences)

  • Victor M. Corman

    (Charité – Universitätsmedizin Berlin Institute of Virology
    German Center for Infection Research (DZIF))

  • Marco Tschapka

    (Ulm University)

  • Christian Drosten

    (Charité – Universitätsmedizin Berlin Institute of Virology
    German Center for Infection Research (DZIF))

  • Simone Sommer

    (Ulm University)

Abstract

Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.

Suggested Citation

  • Magdalena Meyer & Dominik W. Melville & Heather J. Baldwin & Kerstin Wilhelm & Evans Ewald Nkrumah & Ebenezer K. Badu & Samuel Kingsley Oppong & Nina Schwensow & Adam Stow & Peter Vallo & Victor M. Co, 2024. "Bat species assemblage predicts coronavirus prevalence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46979-1
    DOI: 10.1038/s41467-024-46979-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46979-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46979-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Raina K. Plowright & Aliyu N. Ahmed & Tim Coulson & Thomas W. Crowther & Imran Ejotre & Christina L. Faust & Winifred F. Frick & Peter J. Hudson & Tigga Kingston & P. O. Nameer & M. Teague O’Mara & Al, 2024. "Ecological countermeasures to prevent pathogen spillover and subsequent pandemics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ranger, S. & Kenter, J.O. & Bryce, R. & Cumming, G. & Dapling, T. & Lawes, E. & Richardson, P.B., 2016. "Forming shared values in conservation management: An interpretive-deliberative-democratic approach to including community voices," Ecosystem Services, Elsevier, vol. 21(PB), pages 344-357.
    3. Ryan P. Powers & Walter Jetz, 2019. "Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios," Nature Climate Change, Nature, vol. 9(4), pages 323-329, April.
    4. Shai Pilosof & Miguel A. Fortuna & Jean-François Cosson & Maxime Galan & Chaisiri Kittipong & Alexis Ribas & Eran Segal & Boris R. Krasnov & Serge Morand & Jordi Bascompte, 2014. "Host–parasite network structure is associated with community-level immunogenetic diversity," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    5. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    6. Colin J. Carlson & Gregory F. Albery & Cory Merow & Christopher H. Trisos & Casey M. Zipfel & Evan A. Eskew & Kevin J. Olival & Noam Ross & Shweta Bansal, 2022. "Climate change increases cross-species viral transmission risk," Nature, Nature, vol. 607(7919), pages 555-562, July.
    7. Rory Gibb & David W. Redding & Kai Qing Chin & Christl A. Donnelly & Tim M. Blackburn & Tim Newbold & Kate E. Jones, 2020. "Zoonotic host diversity increases in human-dominated ecosystems," Nature, Nature, vol. 584(7821), pages 398-402, August.
    8. Alice Latinne & Ben Hu & Kevin J. Olival & Guangjian Zhu & Libiao Zhang & Hongying Li & Aleksei A. Chmura & Hume E. Field & Carlos Zambrana-Torrelio & Jonathan H. Epstein & Bei Li & Wei Zhang & Lin-Fa, 2020. "Origin and cross-species transmission of bat coronaviruses in China," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    9. Jing Wang & Yuan-fei Pan & Li-fen Yang & Wei-hong Yang & Kexin Lv & Chu-ming Luo & Juan Wang & Guo-peng Kuang & Wei-chen Wu & Qin-yu Gou & Gen-yang Xin & Bo Li & Huan-le Luo & Shoudeng Chen & Yue-long, 2023. "Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Pieter T. J. Johnson & Daniel L. Preston & Jason T. Hoverman & Katherine L. D. Richgels, 2013. "Biodiversity decreases disease through predictable changes in host community competence," Nature, Nature, vol. 494(7436), pages 230-233, February.
    11. Hernani Fernandes Magalhaes de Oliveira & Daiana Cardoso Silva & Priscilla Lora Zangrandi & Fabricius Maia Chaves Bicalho Domingos, 2022. "Brazil opens highly protected caves to mining, risking fauna," Nature, Nature, vol. 602(7897), pages 386-386, February.
    12. Felicia Keesing & Lisa K. Belden & Peter Daszak & Andrew Dobson & C. Drew Harvell & Robert D. Holt & Peter Hudson & Anna Jolles & Kate E. Jones & Charles E. Mitchell & Samuel S. Myers & Tiffany Bogich, 2010. "Impacts of biodiversity on the emergence and transmission of infectious diseases," Nature, Nature, vol. 468(7324), pages 647-652, December.
    13. Fletcher W. Halliday & Jason R. Rohr, 2019. "Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Jason Rohr & Ruina Cui & Yusi Xin & Lixia Han & Xiaona Yang & Shimin Gu & Yuanbao Du & Jing Liang & Xuyu Wang & Zhengjun Wu & Qin Hao & Xuan Liu, 2022. "Biological invasions facilitate zoonotic disease emergences," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Renata L. Muylaert & David A. Wilkinson & Tigga Kingston & Paolo D’Odorico & Maria Cristina Rulli & Nikolas Galli & Reju Sam John & Phillip Alviola & David T. S. Hayman, 2023. "Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Serge Morand & Sathaporn Jittapalapong & Yupin Suputtamongkol & Mohd Tajuddin Abdullah & Tan Boon Huan, 2014. "Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    4. Kristie L. Ebi & Frances Harris & Giles B. Sioen & Chadia Wannous & Assaf Anyamba & Peng Bi & Melanie Boeckmann & Kathryn Bowen & Guéladio Cissé & Purnamita Dasgupta & Gabriel O. Dida & Alexandros Gas, 2020. "Transdisciplinary Research Priorities for Human and Planetary Health in the Context of the 2030 Agenda for Sustainable Development," IJERPH, MDPI, vol. 17(23), pages 1-25, November.
    5. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    7. Haozhe Zhang & Jinyi Li, 2024. "Mapping the urban and rural planning response paths to pandemics of infectious diseases," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    8. Cecilia A. Sánchez & Hongying Li & Kendra L. Phelps & Carlos Zambrana-Torrelio & Lin-Fa Wang & Peng Zhou & Zheng-Li Shi & Kevin J. Olival & Peter Daszak, 2022. "A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D. & Hamer, S.A., 2016. "Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks," Ecological Modelling, Elsevier, vol. 323(C), pages 77-86.
    10. Blanco, Esther & Baier, Alexandra & Holzmeister, Felix & Jaber-Lopez, Tarek & Struwe, Natalie, 2022. "Substitution of social sustainability concerns under the Covid-19 pandemic," Ecological Economics, Elsevier, vol. 192(C).
    11. Aingorn Chaiyes & Nattakan Ariyaraphong & Ngamphrom Sukgosa & Kornsuang Jangtarwan & Syed Farhan Ahmad & Nararat Laopichienpong & Worapong Singchat & Thitipong Panthum & Sutee Duangjai & Narongrit Mua, 2022. "Evidence of Genetic Connectivity among Lyle’s Flying Fox Populations in Thailand for Wildlife Management and One Health Framework," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    12. Rivera-Ferre, Marta G. & López-i-Gelats, Feliu & Ravera, Federica & Oteros-Rozas, Elisa & di Masso, Marina & Binimelis, Rosa & El Bilali, Hamid, 2021. "The two-way relationship between food systems and the COVID19 pandemic: causes and consequences," Agricultural Systems, Elsevier, vol. 191(C).
    13. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Prevention and mitigation of epidemics: Biodiversity conservation and confinement policies," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    14. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    15. Esther Blanco & Alexandra Baier & Felix Holzmeister & Tarek Jaber-Lopez & Natalie Struwe, 2020. "Substitution of social concerns under the Covid-19 pandemic," Working Papers 2020-30, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Hajkowicz, Stefan & Bratanova, Alexandra & Schleiger, Emma & Brosnan, A, 2020. "Global trade and investment megatrends," MPRA Paper 113240, University Library of Munich, Germany.
    17. Voinson, Marina & Smadi, Charline & Billiard, Sylvain, 2022. "How does the host community structure affect the epidemiological dynamics of emerging infectious diseases?," Ecological Modelling, Elsevier, vol. 472(C).
    18. Blanco, Esther & Struwe, Natalie & Walker, James M., 2021. "Experimental evidence on sharing rules and additionality in transfer payments," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1221-1247.
    19. Chen, Shiliang & Liu, Xiang & He, Qiang & Zhou, Shurong, 2022. "Higher-order interactions on disease transmission can reverse the dilution effect or weaken the amplification effect to unimodal pattern," Ecological Modelling, Elsevier, vol. 474(C).
    20. Kakoli Saha & Debjani Ghatak & Nair Shruti S. Muralee, 2022. "Impact of Plantation Induced Forest Degradation on the Outbreak of Emerging Infectious Diseases—Wayanad District, Kerala, India," IJERPH, MDPI, vol. 19(12), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46979-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.