IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43591-7.html
   My bibliography  Save this article

Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions

Author

Listed:
  • Jinxiao Duan

    (Beihang University
    Bar-Ilan University)

  • Guanwen Zeng

    (Bar-Ilan University
    Beihang University)

  • Nimrod Serok

    (Tel Aviv University)

  • Daqing Li

    (Beihang University)

  • Efrat Blumenfeld Lieberthal

    (Tel Aviv University)

  • Hai-Jun Huang

    (Beihang University)

  • Shlomo Havlin

    (Bar-Ilan University)

Abstract

Heavy traffic jams are difficult to predict due to the complexity of traffic dynamics. Understanding the network dynamics of traffic bottlenecks can help avoid critical large traffic jams and improve overall traffic conditions. Here, we develop a method to forecast heavy congestions based on their early propagation stage. Our framework follows the network propagation and dissipation of the traffic jams originated from a bottleneck emergence, growth, and its recovery and disappearance. Based on large-scale urban traffic-speed data, we find that dissipation duration of jams follows approximately power-law distributions, and typically, traffic jams dissolve nearly twice slower than their growth. Importantly, we find that the growth speed, even at the first 15 minutes of a jam, is highly correlated with the maximal size of the jam. Our methodology can be applied in urban traffic control systems to forecast heavy traffic bottlenecks and prevent them before they propagate to large network congestions.

Suggested Citation

  • Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43591-7
    DOI: 10.1038/s41467-023-43591-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43591-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43591-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    2. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    3. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    4. Malte Schröder & David-Maximilian Storch & Philip Marszal & Marc Timme, 2020. "Anomalous supply shortages from dynamic pricing in on-demand mobility," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Minjin Lee & Hugo Barbosa & Hyejin Youn & Petter Holme & Gourab Ghoshal, 2017. "Morphology of travel routes and the organization of cities," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    7. Richard Arnott & André de Palma & Robin Lindsey, 1993. "Properties of Dynamic Traffic Equilibrium Involving Bottlenecks, Including a Paradox and Metering," Transportation Science, INFORMS, vol. 27(2), pages 148-160, May.
    8. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    9. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    10. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    11. Malte Schroder & David-Maximilian Storch & Philip Marszal & Marc Timme, 2020. "Anomalous supply shortages from dynamic pricing in on-demand mobility," Papers 2003.07736, arXiv.org.
    12. Meead Saberi & Homayoun Hamedmoghadam & Mudabber Ashfaq & Seyed Amir Hosseini & Ziyuan Gu & Sajjad Shafiei & Divya J. Nair & Vinayak Dixit & Lauren Gardner & S. Travis Waller & Marta C. González, 2020. "A simple contagion process describes spreading of traffic jams in urban networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    13. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    14. Serdar Çolak & Antonio Lima & Marta C. González, 2016. "Understanding congested travel in urban areas," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    15. André de Palma & Robin Lindsey & Nathalie Picard, 2012. "Risk Aversion, the Value of Information, and Traffic Equilibrium," Transportation Science, INFORMS, vol. 46(1), pages 1-26, February.
    16. Audrey Dussutour & Vincent Fourcassié & Dirk Helbing & Jean-Louis Deneubourg, 2004. "Optimal traffic organization in ants under crowded conditions," Nature, Nature, vol. 428(6978), pages 70-73, March.
    17. Shuo Feng & Haowei Sun & Xintao Yan & Haojie Zhu & Zhengxia Zou & Shengyin Shen & Henry X. Liu, 2023. "Dense reinforcement learning for safety validation of autonomous vehicles," Nature, Nature, vol. 615(7953), pages 620-627, March.
    18. Carlos F. Daganzo, 1998. "Queue Spillovers in Transportation Networks with a Route Choice," Transportation Science, INFORMS, vol. 32(1), pages 3-11, February.
    19. A. M. Avila & I. Mezić, 2020. "Data-driven analysis and forecasting of highway traffic dynamics," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    20. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    21. Marten Scheffer, 2010. "Foreseeing tipping points," Nature, Nature, vol. 467(7314), pages 411-412, September.
    22. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    23. Wu, J.J. & Sun, H.J. & Gao, Z.Y., 2007. "Cascading failures on weighted urban traffic equilibrium networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 407-413.
    24. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    25. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    26. Robert Martin, 2021. "AV futures or futures with AVs? Bridging sociotechnical imaginaries and a multi-level perspective of autonomous vehicle visualisations in praxis," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    27. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    2. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    3. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    4. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    5. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    6. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    8. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    9. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    10. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    11. Michael W. Levin & Alireza Khani, 2018. "Dynamic transit lanes for connected and autonomous vehicles," Public Transport, Springer, vol. 10(3), pages 399-426, December.
    12. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.
    13. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    14. František Kolovský & Ivana Kolingerová, 2022. "The Piecewise Constant/Linear Solution for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 22(4), pages 737-765, December.
    15. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    16. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    17. Jonathan D. Hall, 2017. "Improving the fit of structural models of congestion," Working Papers tecipa-590, University of Toronto, Department of Economics.
    18. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 99-118.
    19. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    20. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43591-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.