IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42351-x.html
   My bibliography  Save this article

Arctic weather variability and connectivity

Author

Listed:
  • Jun Meng

    (Beijing University of Posts and Telecommunications)

  • Jingfang Fan

    (Beijing Normal University
    Potsdam Institute for Climate Impact Research)

  • Uma S. Bhatt

    (University of Alaska Fairbanks
    University of Alaska Fairbanks)

  • Jürgen Kurths

    (Potsdam Institute for Climate Impact Research
    University of Alaska Fairbanks
    University of Alaska Fairbanks
    Humboldt-University)

Abstract

The Arctic’s rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications.

Suggested Citation

  • Jun Meng & Jingfang Fan & Uma S. Bhatt & Jürgen Kurths, 2023. "Arctic weather variability and connectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42351-x
    DOI: 10.1038/s41467-023-42351-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42351-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42351-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Tsonis, A.A. & Roebber, P.J., 2004. "The architecture of the climate network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 497-504.
    3. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    4. Niklas Boers & Bedartha Goswami & Aljoscha Rheinwalt & Bodo Bookhagen & Brian Hoskins & Jürgen Kurths, 2019. "Complex networks reveal global pattern of extreme-rainfall teleconnections," Nature, Nature, vol. 566(7744), pages 373-377, February.
    5. Stefan Rahmstorf, 2003. "Thermohaline circulation: The current climate," Nature, Nature, vol. 421(6924), pages 699-699, February.
    6. James E. Overland & Klaus Dethloff & Jennifer A. Francis & Richard J. Hall & Edward Hanna & Seong-Joong Kim & James A. Screen & Theodore G. Shepherd & Timo Vihma, 2016. "Nonlinear response of mid-latitude weather to the changing Arctic," Nature Climate Change, Nature, vol. 6(11), pages 992-999, November.
    7. Ilka Peeken & Sebastian Primpke & Birte Beyer & Julia Gütermann & Christian Katlein & Thomas Krumpen & Melanie Bergmann & Laura Hehemann & Gunnar Gerdts, 2018. "Arctic sea ice is an important temporal sink and means of transport for microplastic," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    8. Teng Liu & Dean Chen & Lan Yang & Jun Meng & Zanchenling Wang & Josef Ludescher & Jingfang Fan & Saini Yang & Deliang Chen & Jürgen Kurths & Xiaosong Chen & Shlomo Havlin & Hans Joachim Schellnhuber, 2023. "Teleconnections among tipping elements in the Earth system," Nature Climate Change, Nature, vol. 13(1), pages 67-74, January.
    9. Florian Sévellec & Alexey V. Fedorov & Wei Liu, 2017. "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation," Nature Climate Change, Nature, vol. 7(8), pages 604-610, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nico Wunderling & Frederik Wolf & Obbe A. Tuinenburg & Arie Staal, 2022. "Network motifs shape distinct functioning of Earth’s moisture recycling hubs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Somnath Mondal & Ashok K. Mishra & Ruby Leung & Benjamin Cook, 2023. "Global droughts connected by linkages between drought hubs," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Minh-Hoang Nguyen & Minh-Phuong Thi Duong & Manh-Cuong Nguyen & Noah Mutai & Ruining Jin & Phuong-Tri Nguyen & Tam-Tri Le & Quan-Hoang Vuong, 2023. "Promoting Stakeholders’ Support for Marine Protection Policies: Insights from a 42-Country Dataset," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    4. Felix J. Formanski & Marcel M. Pein & David D. Loschelder & John-Oliver Engler & Onno Husen & Johann M. Majer, 2022. "Tipping points ahead? How laypeople respond to linear versus nonlinear climate change predictions," Climatic Change, Springer, vol. 175(1), pages 1-20, November.
    5. Shouro Dasgupta & Elizabeth J. Z. Robinson, 2023. "Climate, weather and child health in Burkina Faso," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 576-602, October.
    6. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    7. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    8. Wesley Marcos Almeida & Claudimar Pereira Veiga, 2023. "Does demand forecasting matter to retailing?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 219-232, June.
    9. Quan-Hoang Vuong & Quang-Loc Nguyen & Ruining Jin & Minh-Hieu Thi Nguyen & Thi-Phuong Nguyen & Viet-Phuong La & Minh-Hoang Nguyen, 2023. "Increasing Supply for Woody-Biomass-Based Energy through Wasted Resources: Insights from US Private Landowners," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    10. Tetiana Zatonatska & Olena Liashenko & Yana Fareniuk & Oleksandr Dluhopolskyi & Artur Dmowski & Marzena Cichorzewska, 2022. "The Migration Influence on the Forecasting of Health Care Budget Expenditures in the Direction of Sustainability: Case of Ukraine," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    11. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Alla Mostepaniuk & Turgay Akalin & Mohammad Reza Parish, 2023. "Practices Pursuing the Sustainability of A Healthcare Organization: A Systematic Review," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. Alroomi, Azzam & Karamatzanis, Georgios & Nikolopoulos, Konstantinos & Tilba, Anna & Xiao, Shujun, 2022. "Fathoming empirical forecasting competitions’ winners," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1519-1525.
    14. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    15. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    17. Veronika Winter & Johanna Kranz & Andrea Möller, 2022. "Climate Change Education Challenges from Two Different Perspectives of Change Agents: Perceptions of School Students and Pre-Service Teachers," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    18. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    19. Guo, Su & Zheng, Kun & He, Yi & Kurban, Aynur, 2023. "The artificial intelligence-assisted short-term optimal scheduling of a cascade hydro-photovoltaic complementary system with hybrid time steps," Renewable Energy, Elsevier, vol. 202(C), pages 1169-1189.
    20. Bazrkar, Mohammad Hadi & Danquah, Eric Owusu & Choi, Soon-Kun & Kim, Min-Kyeong & Jeong, Jaehak & Cho, Jaepil, 2023. "Projected unseasonable and shorter actual growth period for paddy rice and more pollutant loads into water bodies in a changing climate," Agricultural Water Management, Elsevier, vol. 279(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42351-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.