IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33726-7.html
   My bibliography  Save this article

Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion

Author

Listed:
  • Rui Pu

    (South China Normal University)

  • Qiuqiang Zhan

    (South China Normal University
    South China Normal University
    South China Normal University)

  • Xingyun Peng

    (South China Normal University)

  • Siying Liu

    (South China Normal University)

  • Xin Guo

    (South China Normal University)

  • Liangliang Liang

    (National University of Singapore)

  • Xian Qin

    (National University of Singapore)

  • Ziqing Winston Zhao

    (National University of Singapore
    National University of Singapore
    National University of Singapore)

  • Xiaogang Liu

    (National University of Singapore
    National University of Singapore)

Abstract

Nonlinear depletion of fluorescence states by stimulated emission constitutes the basis of stimulated emission depletion (STED) microscopy. Despite significant efforts over the past decade, achieving super-resolution at low saturation intensities by STED remains a major technical challenge. By harnessing the surface quenching effect in NaGdF4:Yb/Tm nanocrystals, we report here high-efficiency emission depletion through surface migration. Using a dual-beam, continuous-wave laser manipulation scheme (975-nm excitation and 730-nm de-excitation), we achieved an emission depletion efficiency of over 95% and a low saturation intensity of 18.3 kW cm−2. Emission depletion by surface migration through gadolinium sublattices enables super-resolution imaging with sub-20 nm lateral resolution. Our approach circumvents the fundamental limitation of high-intensity STED microscopy, providing autofluorescence-free, re-excitation-background-free imaging with a saturation intensity over three orders of magnitude lower than conventional fluorophores. We also demonstrated super-resolution imaging of actin filaments in Hela cells labeled with 8-nm nanoparticles. Combined with the highly photostable lanthanide luminescence, surface-migration emission depletion (SMED) could provide a powerful mechanism for low-power, super-resolution imaging or biological tracking as well as super-resolved optical sensing/writing and lithography.

Suggested Citation

  • Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33726-7
    DOI: 10.1038/s41467-022-33726-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33726-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33726-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William L. Barnes & Alain Dereux & Thomas W. Ebbesen, 2003. "Surface plasmon subwavelength optics," Nature, Nature, vol. 424(6950), pages 824-830, August.
    2. Qiuqiang Zhan & Haichun Liu & Baoju Wang & Qiusheng Wu & Rui Pu & Chao Zhou & Bingru Huang & Xingyun Peng & Hans Ågren & Sailing He, 2017. "Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Katrin I. Willig & Silvio O. Rizzoli & Volker Westphal & Reinhard Jahn & Stefan W. Hell, 2006. "STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis," Nature, Nature, vol. 440(7086), pages 935-939, April.
    4. Changhwan Lee & Emma Z. Xu & Yawei Liu & Ayelet Teitelboim & Kaiyuan Yao & Angel Fernandez-Bravo & Agata M. Kotulska & Sang Hwan Nam & Yung Doug Suh & Artur Bednarkiewicz & Bruce E. Cohen & Emory M. C, 2021. "Giant nonlinear optical responses from photon-avalanching nanoparticles," Nature, Nature, vol. 589(7841), pages 230-235, January.
    5. Deming Liu & Xiaoxue Xu & Yi Du & Xian Qin & Yuhai Zhang & Chenshuo Ma & Shihui Wen & Wei Ren & Ewa M. Goldys & James A. Piper & Shixue Dou & Xiaogang Liu & Dayong Jin, 2016. "Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yen-Hsiang & Shih, Fu-Yuan & Lee, Ming-Tsang & Lee, Yung-Chun & Chen, Yu-Bin, 2020. "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, Elsevier, vol. 193(C).
    2. Christiaan N. Hulleman & Rasmus Ø. Thorsen & Eugene Kim & Cees Dekker & Sjoerd Stallinga & Bernd Rieger, 2021. "Simultaneous orientation and 3D localization microscopy with a Vortex point spread function," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Pengcheng Huo & Wei Chen & Zixuan Zhang & Yanzeng Zhang & Mingze Liu & Peicheng Lin & Hui Zhang & Zhaoxian Chen & Henri Lezec & Wenqi Zhu & Amit Agrawal & Chao Peng & Yanqing Lu & Ting Xu, 2024. "Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Day, Joseph & Senthilarasu, S. & Mallick, Tapas K., 2019. "Improving spectral modification for applications in solar cells: A review," Renewable Energy, Elsevier, vol. 132(C), pages 186-205.
    6. Zhao Jiang & Liangrui He & Zhiwen Yang & Huibin Qiu & Xiaoyuan Chen & Xujiang Yu & Wanwan Li, 2023. "Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Jiménez-Calvo, Pablo & Caps, Valérie & Keller, Valérie, 2021. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Ling-Gang Wu & Chung Yu Chan, 2024. "Membrane transformations of fusion and budding," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Xiangdong Guo & Chenchen Wu & Shu Zhang & Debo Hu & Shunping Zhang & Qiao Jiang & Xiaokang Dai & Yu Duan & Xiaoxia Yang & Zhipei Sun & Shuang Zhang & Hongxing Xu & Qing Dai, 2023. "Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    11. Ahmed Sule & Zulkarnain Abdul Latiff & Mohd Azman Abas & Ibham Veza & Manzoore Elahi M. Soudagar & Irianto Harny & Vorathin Epin, 2023. "Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    12. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Shao-Chun Zhang & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2023. "Quantum enhanced radio detection and ranging with solid spins," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Yanxin Zhang & Rongrong Wen & Jialing Hu & Daoming Guan & Xiaochen Qiu & Yunxiang Zhang & Daniel S. Kohane & Qian Liu, 2022. "Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Hsin-Cheng Lee & Shich-Chuan Wu & Tien-Chung Yang & Ta-Jen Yen, 2010. "Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure," Energies, MDPI, vol. 3(4), pages 1-19, April.
    15. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Xin Guo & Rui Pu & Zhimin Zhu & Shuqian Qiao & Yusen Liang & Bingru Huang & Haichun Liu & Lucía Labrador-Páez & Uliana Kostiv & Pu Zhao & Qiusheng Wu & Jerker Widengren & Qiuqiang Zhan, 2022. "Achieving low-power single-wavelength-pair nanoscopy with NIR-II continuous-wave laser for multi-chromatic probes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Guowei Li & Shihui Jiang & Aijun Liu & Lixiang Ye & Jianxi Ke & Caiping Liu & Lian Chen & Yongsheng Liu & Maochun Hong, 2023. "Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H+ doping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Katsuaki Tanabe, 2009. "A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures," Energies, MDPI, vol. 2(3), pages 1-27, July.
    19. Xiumei Yin & Wen Xu & Ge Zhu & Yanan Ji & Qi Xiao & Xinyao Dong & Ming He & Baosheng Cao & Na Zhou & Xixian Luo & Lin Guo & Bin Dong, 2022. "Towards highly efficient NIR II response up-conversion phosphor enabled by long lifetimes of Er3+," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Lei Lei & Yubin Wang & Weixin Xu & Renguang Ye & Youjie Hua & Degang Deng & Liang Chen & Paras N. Prasad & Shiqing Xu, 2022. "Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33726-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.