IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34350-1.html
   My bibliography  Save this article

Towards highly efficient NIR II response up-conversion phosphor enabled by long lifetimes of Er3+

Author

Listed:
  • Xiumei Yin

    (Dalian Minzu University)

  • Wen Xu

    (Dalian Minzu University)

  • Ge Zhu

    (Dalian Minzu University)

  • Yanan Ji

    (Dalian Minzu University)

  • Qi Xiao

    (Dalian Minzu University)

  • Xinyao Dong

    (Dalian Minzu University)

  • Ming He

    (Dalian Minzu University)

  • Baosheng Cao

    (Dalian Minzu University)

  • Na Zhou

    (Dalian Minzu University)

  • Xixian Luo

    (Dalian Minzu University)

  • Lin Guo

    (Beijing University of Aeronautics & Astronautics)

  • Bin Dong

    (Dalian Minzu University)

Abstract

The second near-infrared (NIR II) response photon up-conversion (UC) materials show great application prospects in the fields of biology and optical communication. However, it is still an enormous challenge to obtain efficient NIR II response materials. Herein, we develop a series of Er3+ doped ternary sulfides phosphors with highly efficient UC emissions under 1532 nm irradiation. β-NaYS2:Er3+ achieves a visible UC efficiency as high as 2.6%, along with high brightness, spectral stability of lights illumination and temperature. Such efficient UC is dominated by excited state absorption, accompanied by the advantage of long lifetimes (4I9/2, 9.24 ms; 4I13/2, 30.27 ms) of excited state levels of Er3+, instead of the well-recognized energy transfer UC between sensitizer and activator. NaYS2:Er3+ phosphors are further developed for high-performance underwater communication and narrowband NIR photodetectors. Our findings suggest a novel approach for developing NIR II response UC materials, and simulate new applications, eg., simultaneous NIR and visible optical communication.

Suggested Citation

  • Xiumei Yin & Wen Xu & Ge Zhu & Yanan Ji & Qi Xiao & Xinyao Dong & Ming He & Baosheng Cao & Na Zhou & Xixian Luo & Lin Guo & Bin Dong, 2022. "Towards highly efficient NIR II response up-conversion phosphor enabled by long lifetimes of Er3+," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34350-1
    DOI: 10.1038/s41467-022-34350-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34350-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34350-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tianying Sun & Yuhua Li & Wai Lok Ho & Qi Zhu & Xian Chen & Limin Jin & Haomiao Zhu & Bolong Huang & Jun Lin & Brent E. Little & Sai Tak Chu & Feng Wang, 2019. "Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Xiaowang Liu & Yu Wang & Xiyan Li & Zhigao Yi & Renren Deng & Liangliang Liang & Xiaoji Xie & Daniel T. B. Loong & Shuyan Song & Dianyuan Fan & Angelo H. All & Hongjie Zhang & Ling Huang & Xiaogang Li, 2017. "Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    3. Qiuqiang Zhan & Haichun Liu & Baoju Wang & Qiusheng Wu & Rui Pu & Chao Zhou & Bingru Huang & Xingyun Peng & Hans Ågren & Sailing He, 2017. "Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yiqian Tang & Yiyu Cai & Kunpeng Dou & Jianqing Chang & Wei Li & Shanshan Wang & Mingzi Sun & Bolong Huang & Xiaofeng Liu & Jianrong Qiu & Lei Zhou & Mingmei Wu & Jun-Cheng Zhang, 2024. "Dynamic multicolor emissions of multimodal phosphors by Mn2+ trace doping in self-activated CaGa4O7," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34350-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.