IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36929-8.html
   My bibliography  Save this article

Quantum enhanced radio detection and ranging with solid spins

Author

Listed:
  • Xiang-Dong Chen

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • En-Hui Wang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Long-Kun Shan

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Shao-Chun Zhang

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Ce Feng

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yu Zheng

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Yang Dong

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Guang-Can Guo

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Fang-Wen Sun

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

The accurate radio frequency (RF) ranging and localizing of objects has benefited the researches including autonomous driving, the Internet of Things, and manufacturing. Quantum receivers have been proposed to detect the radio signal with ability that can outperform conventional measurement. As one of the most promising candidates, solid spin shows superior robustness, high spatial resolution and miniaturization. However, challenges arise from the moderate response to a high frequency RF signal. Here, by exploiting the coherent interaction between quantum sensor and RF field, we demonstrate quantum enhanced radio detection and ranging. The RF magnetic sensitivity is improved by three orders to 21 $${{{{{{{\rm{pT}}}}}}}}/\sqrt{{{{{{{{\rm{Hz}}}}}}}}}$$ pT / Hz , based on nanoscale quantum sensing and RF focusing. Further enhancing the response of spins to the target’s position through multi-photon excitation, a ranging accuracy of 16 μm is realized with a GHz RF signal. The results pave the way for exploring quantum enhanced radar and communications with solid spins.

Suggested Citation

  • Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Shao-Chun Zhang & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2023. "Quantum enhanced radio detection and ranging with solid spins," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36929-8
    DOI: 10.1038/s41467-023-36929-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36929-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36929-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Changhwan Lee & Emma Z. Xu & Yawei Liu & Ayelet Teitelboim & Kaiyuan Yao & Angel Fernandez-Bravo & Agata M. Kotulska & Sang Hwan Nam & Yung Doug Suh & Artur Bednarkiewicz & Bruce E. Cohen & Emory M. C, 2021. "Giant nonlinear optical responses from photon-avalanching nanoparticles," Nature, Nature, vol. 589(7841), pages 230-235, January.
    2. Yoram J. Kaufman & Didier Tanré & Olivier Boucher, 2002. "A satellite view of aerosols in the climate system," Nature, Nature, vol. 419(6903), pages 215-223, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neha Shaw & A. K. Gorai, 2020. "Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 265-279, January.
    2. Tianhao Zhang & Gang Liu & Zhongmin Zhu & Wei Gong & Yuxi Ji & Yusi Huang, 2016. "Real-Time Estimation of Satellite-Derived PM 2.5 Based on a Semi-Physical Geographically Weighted Regression Model," IJERPH, MDPI, vol. 13(10), pages 1-13, September.
    3. Tianhao Zhang & Wei Gong & Wei Wang & Yuxi Ji & Zhongmin Zhu & Yusi Huang, 2016. "Ground Level PM 2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO 2 and Enhanced Vegetation Index (EVI)," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    4. Prasad, Abhnil Amtesh & Nishant, Nidhi & Kay, Merlinde, 2022. "Dust cycle and soiling issues affecting solar energy reductions in Australia using multiple datasets," Applied Energy, Elsevier, vol. 310(C).
    5. Zhao Jiang & Liangrui He & Zhiwen Yang & Huibin Qiu & Xiaoyuan Chen & Xujiang Yu & Wanwan Li, 2023. "Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yumara Martín-Cruz & Álvaro Gómez-Losada, 2023. "Risk Assessment and Source Apportionment of Metals on Atmospheric Particulate Matter in a Suburban Background Area of Gran Canaria (Spain)," IJERPH, MDPI, vol. 20(10), pages 1-18, May.
    7. Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Suman Moparthy & Dominique Carrer & Xavier Ceamanos, 2019. "Can We Detect the Brownness or Greenness of the Congo Rainforest Using Satellite-Derived Surface Albedo? A Study on the Role of Aerosol Uncertainties," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    9. Cheng Chen & Oleg Dubovik & Gregory L. Schuster & Mian Chin & Daven K. Henze & Tatyana Lapyonok & Zhengqiang Li & Yevgeny Derimian & Ying Zhang, 2022. "Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Ahmed Sule & Zulkarnain Abdul Latiff & Mohd Azman Abas & Ibham Veza & Manzoore Elahi M. Soudagar & Irianto Harny & Vorathin Epin, 2023. "Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    11. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    12. Wei Wang & Zengxin Pan & Feiyue Mao & Wei Gong & Longjiao Shen, 2017. "Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements," IJERPH, MDPI, vol. 14(9), pages 1-12, September.
    13. B. Padmakumari & A. Jaswal & B. Goswami, 2013. "Decrease in evaporation over the Indian monsoon region: implication on regional hydrological cycle," Climatic Change, Springer, vol. 121(4), pages 787-799, December.
    14. Liang Cheng & Long Li & Longqian Chen & Sai Hu & Lina Yuan & Yunqiang Liu & Yifan Cui & Ting Zhang, 2019. "Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
    15. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Xiankang Xu & Kaifang Shi & Zhongyu Huang & Jingwei Shen, 2023. "What Factors Dominate the Change of PM 2.5 in the World from 2000 to 2019? A Study from Multi-Source Data," IJERPH, MDPI, vol. 20(3), pages 1-28, January.
    17. Guowei Li & Shihui Jiang & Aijun Liu & Lixiang Ye & Jianxi Ke & Caiping Liu & Lian Chen & Yongsheng Liu & Maochun Hong, 2023. "Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H+ doping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Zhiyuan Fang & Hao Yang & Ye Cao & Kunming Xing & Dong Liu & Ming Zhao & Chenbo Xie, 2021. "Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite," Sustainability, MDPI, vol. 13(2), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36929-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.