IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp186-205.html
   My bibliography  Save this article

Improving spectral modification for applications in solar cells: A review

Author

Listed:
  • Day, Joseph
  • Senthilarasu, S.
  • Mallick, Tapas K.

Abstract

The spectral mismatch between solar cells and incident radiation is a fundamental factor limiting their efficiencies. There exist materials and luminescent processes which can modify the incident sunlight’s properties to better suit the cell’s optimal absorption regions. This makes for an interesting area of research and promising technique for enhancing the efficiency of solar cells which is important for environmental reasons. It is intended for this review to provide the reader with historical and up-to-date developments of the application of spectral modification to solar cells and contribute to growing its impact on real-world PV devices. We concisely outline the underlying principles of three spectral modification processes: upconversion (UC), downconversion (DC) and luminescent downshifting (LDS). For each section we present up to date experimental results for applications to a range of solar PV technologies and discuss their drawbacks. With particular focus on UC, we then review how nanostructures or integrated optics might overcome these problems. Finally, we discuss practical challenges associated with advancing this approach for commercialisation and opportunities spectral modification presents; namely where future research should focus and via a cost analysis with a simple formula that can be used to determine financial viability for the deployment of this technology.

Suggested Citation

  • Day, Joseph & Senthilarasu, S. & Mallick, Tapas K., 2019. "Improving spectral modification for applications in solar cells: A review," Renewable Energy, Elsevier, vol. 132(C), pages 186-205.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:186-205
    DOI: 10.1016/j.renene.2018.07.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811830898X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William L. Barnes & Alain Dereux & Thomas W. Ebbesen, 2003. "Surface plasmon subwavelength optics," Nature, Nature, vol. 424(6950), pages 824-830, August.
    2. Raugei, Marco & Bargigli, Silvia & Ulgiati, Sergio, 2007. "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si," Energy, Elsevier, vol. 32(8), pages 1310-1318.
    3. Xing, Yupeng & Han, Peide & Wang, Shuai & Liang, Peng & Lou, Shishu & Zhang, Yuanbo & Hu, Shaoxu & Zhu, Huishi & Zhao, Chunhua & Mi, Yanhong, 2015. "A review of concentrator silicon solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1697-1708.
    4. Junxin Wang & Tian Ming & Zhao Jin & Jianfang Wang & Ling-Dong Sun & Chun-Hua Yan, 2014. "Photon energy upconversion through thermal radiation with the power efficiency reaching 16%," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    5. Wilfried Van Sark & Andries Meijerink & Ruud Schropp, 2012. "Solar Spectrum Conversion for Photovoltaics Using Nanoparticles," Chapters, in: Vasilis Fthenakis (ed.), Third Generation Photovoltaics, IntechOpen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Znajdek & Natalia Gwardjan & Aleksandra Sosna-Głębska & Maciej Sibiński, 2021. "Spray Coating Luminescence Layers on Glass for Si Solar Cells Efficiency Enhancement," Energies, MDPI, vol. 14(21), pages 1-11, October.
    2. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    3. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    4. Zhang, Chunxiao & Shen, Chao & Yang, Qianru & Wei, Shen & Lv, Guoquan & Sun, Cheng, 2020. "An investigation on the attenuation effect of air pollution on regional solar radiation," Renewable Energy, Elsevier, vol. 161(C), pages 570-578.
    5. Gupta, Sowmya & Rajhans, Chinmay & Duttagupta, Siddhartha P. & Mitra, Mira, 2021. "Hybrid energy design for lighter than air systems," Renewable Energy, Elsevier, vol. 173(C), pages 781-794.
    6. Diniz, Filipe L.J. & Vital, Caio V.P. & Gómez-Malagón, Luis A., 2022. "Parametric analysis of energy and exergy efficiencies of a hybrid PV/T system containing metallic nanofluids," Renewable Energy, Elsevier, vol. 186(C), pages 51-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yen-Hsiang & Shih, Fu-Yuan & Lee, Ming-Tsang & Lee, Yung-Chun & Chen, Yu-Bin, 2020. "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, Elsevier, vol. 193(C).
    2. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    3. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    4. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    5. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    6. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    8. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    9. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    10. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    11. Dijkman, T.J. & Benders, R.M.J., 2010. "Comparison of renewable fuels based on their land use using energy densities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3148-3155, December.
    12. Ravi, Sujith & Macknick, Jordan & Lobell, David & Field, Christopher & Ganesan, Karthik & Jain, Rishabh & Elchinger, Michael & Stoltenberg, Blaise, 2016. "Colocation opportunities for large solar infrastructures and agriculture in drylands," Applied Energy, Elsevier, vol. 165(C), pages 383-392.
    13. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    14. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Berger, Wolfgang & Simon, Franz-Georg & Weimann, Karin & Alsema, Erik A., 2010. "A novel approach for the recycling of thin film photovoltaic modules," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 711-718.
    16. Kim, Namsu & Kim, Dajung & Kang, Hanjun & Park, Yong-Gi, 2016. "Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet," Energy, Elsevier, vol. 113(C), pages 515-520.
    17. Mansouri, Noura Y. & Crookes, Roy J. & Korakianitis, Theodosios, 2013. "A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics," Energy Policy, Elsevier, vol. 63(C), pages 681-695.
    18. Goe, Michele & Gaustad, Gabrielle, 2014. "Strengthening the case for recycling photovoltaics: An energy payback analysis," Applied Energy, Elsevier, vol. 120(C), pages 41-48.
    19. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    20. Serrano-Luján, Lucía & Espinosa, Nieves & Abad, Jose & Urbina, Antonio, 2017. "The greenest decision on photovoltaic system allocation," Renewable Energy, Elsevier, vol. 101(C), pages 1348-1356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:186-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.