IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v20y2020i4d10.1007_s11067-020-09502-9.html
   My bibliography  Save this article

Transmission Network Investment Using Incentive Regulation: A Disjunctive Programming Approach

Author

Listed:
  • D. Khastieva

    (KTH Royal Institute of Technology)

  • M. R. Hesamzadeh

    (KTH Royal Institute of Technology)

  • I. Vogelsang

    (Boston University)

  • J. Rosellón

    (Centro de Investigación y Docencia Económicas, CIDE
    Research Fellow, DIW Berlin, Department of Energy, Transportation, Environment
    Rice University
    Nonresident Fellow, Universidad Panamericana)

Abstract

A well-planned electric transmission infrastructure is the foundation of a reliable and efficient power system, especially in the presence of large scale renewable generation. However, the current electricity market designs lack incentive mechanisms which can guarantee optimal transmission investments and ensure reliable integration of renewable generation such as wind. This paper first proposes a stochastic bilevel disjunctive program for optimal transmission investment based on the newly proposed theoretical H-R-G-V incentive mechanism. The upper level is a profit-maximization problem of an independent transmission company (Transco), while the lower level is a welfare maximization problem. The revenue of the Transco is bounded by a regulatory constraint set by the regulator in order to induce socially optimal investments. The application of the H-R-G-V mechanism allows the regulator to ensure social maximum transmission investments and helps to reduce transmission congestion and wind power spillage. The transmission investment under the H-R-G-V mechanism is modeled as a stochastic bilevel disjunctive program. To solve the developed mathematical model we first propose a series of linearization and reformulation techniques to recast the original model as a stochastic mixed integer linear problem (MILP). We exploit the disjunctive nature of the reformulated stochastic MILP model and further propose a Bean decomposition algorithm to efficiently solve the stochastic MILP model. The proposed decomposition algorithm is also modified and accelerated to improve the computational performance. The computational performance of our MILP modeling approach and modified and accelerated Bean decomposition algorithm is studied through several examples in detail. The simulation results confirm a promising performance of both the modeling approach and its solution algorithm.

Suggested Citation

  • D. Khastieva & M. R. Hesamzadeh & I. Vogelsang & J. Rosellón, 2020. "Transmission Network Investment Using Incentive Regulation: A Disjunctive Programming Approach," Networks and Spatial Economics, Springer, vol. 20(4), pages 1029-1068, December.
  • Handle: RePEc:kap:netspa:v:20:y:2020:i:4:d:10.1007_s11067-020-09502-9
    DOI: 10.1007/s11067-020-09502-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-020-09502-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-020-09502-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Bean & Wallace J. Hopp & Izak Duenyas, 1992. "A Stopping Rule for Forecasting Horizons in Nonhomogeneous Markov Decision Processes," Operations Research, INFORMS, vol. 40(6), pages 1188-1199, December.
    2. Thomas-Olivier Leautier, 2000. "Regulation of an Electric Power Transmission Company," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-92.
    3. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    4. Sappington, David E M & Sibley, David S, 1988. "Regulating without Cost Information: The Incremental Surplus Subsidy Scheme," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(2), pages 297-306, May.
    5. Anne Neumann & Juan Rosellón & Hannes Weigt, 2015. "Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism," Networks and Spatial Economics, Springer, vol. 15(1), pages 149-181, March.
    6. Makoto Tanaka, 2007. "Extended Price Cap Mechanism for Efficient Transmission Expansion under Nodal Pricing," Networks and Spatial Economics, Springer, vol. 7(3), pages 257-275, September.
    7. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    8. Vogelsang, Ingo, 2001. "Price Regulation for Independent Transmission Companies," Journal of Regulatory Economics, Springer, vol. 20(2), pages 141-165, September.
    9. Loeb, Martin & Magat, Wesley A, 1979. "A Decentralized Method for Utility Regulation," Journal of Law and Economics, University of Chicago Press, vol. 22(2), pages 399-404, October.
    10. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    11. Hesamzadeh, M.R. & Rosellón, J. & Gabriel, S.A. & Vogelsang, I., 2018. "A simple regulatory incentive mechanism applied to electricity transmission pricing and investment," Energy Economics, Elsevier, vol. 75(C), pages 423-439.
    12. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    13. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    14. Joshua S. Gans & Stephen P. King, 2000. "Options for Electricity Transmission Regulation in Australia," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 33(2), pages 145-160, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eicke, Anselm, 2022. "Where should generators be built in a zonal electricity market? A numerical analysis of administratively determined investment signals," EconStor Preprints 261346, ZBW - Leibniz Information Centre for Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    2. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Varawala, Lamia & Hesamzadeh, Mohammad Reza & Dán, György & Bunn, Derek & Rosellón, Juan, 2023. "A pricing mechanism to jointly mitigate market power and environmental externalities in electricity markets," Energy Economics, Elsevier, vol. 121(C).
    4. Ingo Vogelsang, 2006. "Electricity Transmission Pricing and Performance-based Regulation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-126.
    5. Benjamin, Richard, 2013. "A two-part tariff for financing transmission expansion," Utilities Policy, Elsevier, vol. 27(C), pages 98-107.
    6. Hesamzadeh, M.R. & Rosellón, J. & Gabriel, S.A. & Vogelsang, I., 2018. "A simple regulatory incentive mechanism applied to electricity transmission pricing and investment," Energy Economics, Elsevier, vol. 75(C), pages 423-439.
    7. Makoto TANAKA, 2005. "Optimal Transmission Capacity under Nodal Pricing and Incentive Regulation for Transco," Discussion papers 05021, Research Institute of Economy, Trade and Industry (RIETI).
    8. Dagobert Brito & Juan Rosellón, 2011. "Lumpy Investment in Regulated Natural Gas Pipelines: An Application of the Theory of the Second Best," Networks and Spatial Economics, Springer, vol. 11(3), pages 533-553, September.
    9. Juan Rosellón, 2009. "Mechanisms for the Optimal Expansion of Electricity Transmission Networks," Chapters, in: Joanne Evans & Lester C. Hunt (ed.), International Handbook on the Economics of Energy, chapter 24, Edward Elgar Publishing.
    10. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    11. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    12. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.
    13. Makoto Tanaka, 2007. "Extended Price Cap Mechanism for Efficient Transmission Expansion under Nodal Pricing," Networks and Spatial Economics, Springer, vol. 7(3), pages 257-275, September.
    14. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    15. Paul Joskow & Jean Tirole, 2005. "Merchant Transmission Investment," Journal of Industrial Economics, Wiley Blackwell, vol. 53(2), pages 233-264, June.
    16. Juan Rosellón, Ingo Vogelsang, and Hannes Weigt, 2012. "Long-run Cost Functions for Electricity Transmission," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    17. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    18. Mohammad Reza Hesamzadeh & Juan Rosellón & Steven A. Gabriel, 2015. "A Profit-Maximizing Approach for Transmission Expansion Planning Using a Revenue-Cap Incentive Mechanism," Discussion Papers of DIW Berlin 1470, DIW Berlin, German Institute for Economic Research.
    19. Espinosa, Rubi & Rosellon, Juan, 2017. "Optimal Transmission Tariff Regulation for the Southern Baja-Californian Electricity Network System," MPRA Paper 98092, University Library of Munich, Germany.
    20. Claudia Kemfert & Friedrich Kunz & Juan Rosellón, 2015. "A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany," Discussion Papers of DIW Berlin 1492, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:20:y:2020:i:4:d:10.1007_s11067-020-09502-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.