IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v44y2015i2p175-188.html
   My bibliography  Save this article

The dynamics of ICT adaptation and the productivity gaps across advanced nations

Author

Listed:
  • Tero Kuusi

Abstract

This paper concerns the relationship between ICT and the emerged productivity gaps across the advanced nations. It is shown theoretically that the standard output elasticity estimation methods may lead to underestimate the role of ICT in generating productivity gaps, when there is a trade-off between speed of introducing technologies and the need to assimilate those as reflected by the inefficiency with which the new technology is used. The trade-off generates leader-follower patterns and mutes the relationship between productivity and ICT. The paper tests several economic hypotheses derived from the theory of technology adaptation using data envelope analysis, a novel growth factorization, and a range of panel econometrics techniques. It finds new evidence for the importance of ICT capital. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Tero Kuusi, 2015. "The dynamics of ICT adaptation and the productivity gaps across advanced nations," Journal of Productivity Analysis, Springer, vol. 44(2), pages 175-188, October.
  • Handle: RePEc:kap:jproda:v:44:y:2015:i:2:p:175-188
    DOI: 10.1007/s11123-014-0422-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-014-0422-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-014-0422-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Venturini, 2009. "The long-run impact of ICT," Empirical Economics, Springer, vol. 37(3), pages 497-515, December.
    2. Marcel P. Timmer & Mary O’Mahony & Bart van Ark, 2007. "EU KLEMS Growth and Productivity Accounts: An Overview," International Productivity Monitor, Centre for the Study of Living Standards, vol. 14, pages 71-85, Spring.
    3. Mirko Draca & Raffaella Sadun & John Van Reenen, 2006. "Productivity and ICT: A Review of the Evidence," CEP Discussion Papers dp0749, Centre for Economic Performance, LSE.
    4. Susanto Basu & John G. Fernald & Nicholas Oulton & Sylaja Srinivasan, 2004. "The Case of the Missing Productivity Growth, or Does Information Technology Explain Why Productivity Accelerated in the United States but Not in the United Kingdom?," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 9-82, National Bureau of Economic Research, Inc.
    5. Oulton, Nicholas & Srinivasan, Sylaja, 2005. "Productivity growth and the role of ICT in the United Kingdom: an industry view, 1970-2000," LSE Research Online Documents on Economics 19901, London School of Economics and Political Science, LSE Library.
    6. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    7. Mary O'Mahony & Michela Vecchi, 2005. "Quantifying the Impact of ICT Capital on Output Growth: A Heterogeneous Dynamic Panel Approach," Economica, London School of Economics and Political Science, vol. 72(288), pages 615-633, November.
    8. Los, Bart & Timmer, Marcel P., 2005. "The 'appropriate technology' explanation of productivity growth differentials: An empirical approach," Journal of Development Economics, Elsevier, vol. 77(2), pages 517-531, August.
    9. repec:dgr:rugggd:gd-104 is not listed on IDEAS
    10. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    11. Susanto Basu & John G. Fernald & Nicholas Oulton & Sylaja Srinivasan, 2003. "The Case of the Missing Productivity Growth: Or, Does Information Technology Explain why Productivity Accelerated in the US but not the UK?," NBER Working Papers 10010, National Bureau of Economic Research, Inc.
    12. David N. Weil, 1996. "Appropriate Technology and Growth," Working Papers 96-24, Brown University, Department of Economics.
    13. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    14. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    15. Harald Fadinger & Pablo Fleiss, 2011. "Trade and Sectoral Productivity," Economic Journal, Royal Economic Society, vol. 121(555), pages 958-989, September.
    16. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    17. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    18. Jakub Growiec, 2012. "The World Technology Frontier: What Can We Learn from the US States?-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(6), pages 777-807, December.
    19. Susanto Basu & John G. Fernald, 2008. "Information and communications technology as a general purpose technology: evidence from U.S. industry data," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    20. Parente Stephen L., 1994. "Technology Adoption, Learning-by-Doing, and Economic Growth," Journal of Economic Theory, Elsevier, vol. 63(2), pages 346-369, August.
    21. Wilson, Paul W., 2008. "FEAR: A software package for frontier efficiency analysis with R," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 247-254, December.
    22. Robert Inklaar & Marcel P. Timmer & Bart van Ark, 2008. "Market services productivity across Europe and the US [‘Distance to Frontier, Selection, and Economic Growth’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 23(53), pages 140-194.
    23. Inklaar, Robert & Timmer, Marcel P., 2008. "GGDC Productivity Level Database: International Comparisons of Output, Inputs and Productivity at the Industry Level," GGDC Research Memorandum GD-104, Groningen Growth and Development Centre, University of Groningen.
    24. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiwei Chen & Yuhuan Xu & Sijin Li & Yin Huang, 2023. "The Evolution and Factors Affecting the Distribution Industry in Poverty-Stricken Counties of Henan Province, China," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
    2. Franz Haider & Robert Kunst & Franz Wirl, 2021. "Total factor productivity, its components and drivers," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 283-327, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danish Ahmed SIDDIQUI & Qazi Masood AHMED, 2019. "Are institutions a crucial determinant of cross country economic efficiency? A two-stage double bootstrap data envelopment analysis," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(1(618), S), pages 89-114, Spring.
    2. repec:agr:journl:v:1(618):y:2019:i:1(618):p:89-114 is not listed on IDEAS
    3. Venturini, Francesco, 2015. "The modern drivers of productivity," Research Policy, Elsevier, vol. 44(2), pages 357-369.
    4. Tero Kuusi & Martti Kulvik & Juha-Matti Junnonen, 2022. "Productivity Growth in Construction Value Chains," International Productivity Monitor, Centre for the Study of Living Standards, vol. 42, pages 3-32, Spring.
    5. Ceccobelli, M. & Gitto, S. & Mancuso, P., 2012. "ICT capital and labour productivity growth: A non-parametric analysis of 14 OECD countries," Telecommunications Policy, Elsevier, vol. 36(4), pages 282-292.
    6. Francesco Venturini, 2009. "The long-run impact of ICT," Empirical Economics, Springer, vol. 37(3), pages 497-515, December.
    7. Liao, Hailin & Wang, Bin & Li, Baibing & Weyman-Jones, Tom, 2016. "ICT as a general-purpose technology: The productivity of ICT in the United States revisited," Information Economics and Policy, Elsevier, vol. 36(C), pages 10-25.
    8. Konstantinos Chatzimichael & Vangelis Tzouvelekas, 2014. "Human capital contributions to explain productivity differences," Journal of Productivity Analysis, Springer, vol. 41(3), pages 399-417, June.
    9. Jakub Growiec, 2013. "On the measurement of technological progress across countries," Bank i Kredyt, Narodowy Bank Polski, vol. 44(5), pages 467-504.
    10. Fueki, Takuji & Kawamoto, Takuji, 2009. "Does information technology raise Japan's productivity?," Japan and the World Economy, Elsevier, vol. 21(4), pages 325-336, December.
    11. Nin-Prat, Alejandro & Falconi, Cesar & Ludena, Carlos & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," 2015 Conference, August 9-14, 2015, Milan, Italy 211725, International Association of Agricultural Economists.
    12. Jens J. Krüger, 2017. "Revisiting the world technology frontier: a directional distance function approach," Journal of Economic Growth, Springer, vol. 22(1), pages 67-95, March.
    13. López-Pueyo, Carmen & Mancebón, María-Jesús, 2010. "Innovation, accumulation and assimilation: Three sources of productivity growth in ICT industries," Journal of Policy Modeling, Elsevier, vol. 32(2), pages 268-285, March.
    14. Filippetti, Andrea & Payrache, Antonio, 2010. "Productivity growth and catch up in Europe: A new perspective on total factor productivity differences," MPRA Paper 27212, University Library of Munich, Germany.
    15. Michele Battisti & Massimo Del Gatto & Christopher F. Parmeter, 2018. "Labor productivity growth: disentangling technology and capital accumulation," Journal of Economic Growth, Springer, vol. 23(1), pages 111-143, March.
    16. Carmen L�pez Pueyo & M� Jes�s Manceb�n Torrubia, 2009. "Sources of productivity growth and convergence in ict industries: an intertemporal non-parametric frontier approach?," Documentos de Trabajo dt2009-04, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    17. Jerzmanowski, Michal, 2007. "Total factor productivity differences: Appropriate technology vs. efficiency," European Economic Review, Elsevier, vol. 51(8), pages 2080-2110, November.
    18. Allen, Robert C., 2012. "Technology and the great divergence: Global economic development since 1820," Explorations in Economic History, Elsevier, vol. 49(1), pages 1-16.
    19. Francesco VENTURINI, 2008. "Information Technology, Research & Development, or Both? What Really Drives A Nation's Productivity," Working Papers 321, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    20. Oleg Badunenko & Daniel Henderson & R. Russell, 2013. "Polarization of the worldwide distribution of productivity," Journal of Productivity Analysis, Springer, vol. 40(2), pages 153-171, October.
    21. Ana Rincon & Michela VECCHI & Francesco VENTURINI, 2012. "ICT spillovers, absorptive capacity and productivity performance," Quaderni del Dipartimento di Economia, Finanza e Statistica 103/2012, Università di Perugia, Dipartimento Economia.

    More about this item

    Keywords

    MFP; ICT capital; Growth differentials; O3; O4; C2; C4;
    All these keywords.

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:44:y:2015:i:2:p:175-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.