IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v46y2015i4p551-574.html
   My bibliography  Save this article

Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application

Author

Listed:
  • Heni Boubaker

Abstract

The aim of this paper is to estimate the parameters of a stationary Gegenbauer process using a wavelet methodology where the selection of the orthonormal basis is given by generalized variance portmanteau test. Two other maximum likelihood estimators, including the Whittle and the wavelets—Whitcher (Technometrics 46:225–238, 2004 ) estimators, are also considered. We have shown by Monte-Carlo experiments that the new selection procedure improves considerably the Whittle and Whitcher estimators. Moreover, to assess the impact of volatility in the estimation methods, we assumed that the innovations $$\varepsilon _{t}$$ ε t are generated by univariate GARCH process. Simulation experiments show that the wavelets estimators perform better under most situations than the Whittle estimator. We then applied this new selection method to the consumer price index in monthly frequencies for the United States and find that this is more appropriate for forecasts. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Heni Boubaker, 2015. "Wavelet Estimation of Gegenbauer Processes: Simulation and Empirical Application," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 551-574, December.
  • Handle: RePEc:kap:compec:v:46:y:2015:i:4:p:551-574
    DOI: 10.1007/s10614-014-9471-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-014-9471-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-014-9471-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collet J.J. & Fadili J.M., 2005. "Simulation of Gegenbauer processes using wavelet packets," School of Economics and Finance Discussion Papers and Working Papers Series 190, School of Economics and Finance, Queensland University of Technology.
    2. Boubaker Heni & Boutahar Mohamed, 2011. "A wavelet-based approach for modelling exchange rates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 201-220, June.
    3. Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," PSE-Ecole d'économie de Paris (Postprint) halshs-00375758, HAL.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Pena D. & Rodriguez J., 2002. "A Powerful Portmanteau Test of Lack of Fit for Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 601-610, June.
    6. Heni Boubaker & Anne Péguin-Feissolle, 2013. "Estimating the Long-Memory Parameter in Nonstationary Processes Using Wavelets," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 291-306, October.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    8. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    9. Esam Mahdi & A. Ian McLeod, 2012. "Improved multivariate portmanteau test," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 211-222, March.
    10. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    11. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan He & Xuansen He, 2019. "A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 729-761, August.
    2. Souhir Ben Amor & Heni Boubaker & Lotfi Belkacem, 2022. "A Dual Generalized Long Memory Modelling for Forecasting Electricity Spot Price: Neural Network and Wavelet Estimate," Papers 2204.08289, arXiv.org.
    3. Yixun Xing & Wayne A. Woodward, 2021. "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 773-790, February.
    4. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    3. Richards, Gordon R., 2000. "The fractal structure of exchange rates: measurement and forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 163-180, June.
    4. Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
    5. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    6. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    7. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    8. Souhir Ben Amor & Heni Boubaker & Lotfi Belkacem, 2022. "A Dual Generalized Long Memory Modelling for Forecasting Electricity Spot Price: Neural Network and Wavelet Estimate," Papers 2204.08289, arXiv.org.
    9. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    10. Osamah M. Al-Khazali, 2003. "Stock Prices, Inflation, and Output: Evidence from the Emerging Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 2(3), pages 287-314, September.
    11. Chia-Lin Chang & Michael McAleer & Dan Slottje, 2009. "Modelling International Tourist Arrivals and Volatility: An Application to Taiwan," "Marco Fanno" Working Papers 0097, Dipartimento di Scienze Economiche "Marco Fanno".
    12. Carnero, María Ángeles & Peña, Daniel & Ruiz Ortega, Esther, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    14. Poshakwale, Sunil S. & Aquino, Katty Pérez, 2008. "The dynamics of volatility transmission and information flow between ADRs and their underlying stocks," Global Finance Journal, Elsevier, vol. 19(2), pages 187-201.
    15. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    16. Hanabusa, Kunihiro, 2017. "Japan’s quantitative monetary easing policy: Effect on the level and volatility of yield spreads," Journal of Asian Economics, Elsevier, vol. 53(C), pages 56-66.
    17. Chia-Lin Chang & Michael McAleer & Christine Lim, 2010. "Modelling the Volatility in Short and Long Haul Japanese Tourist Arrivals to New Zealand and Taiwan," Working Papers in Economics 10/40, University of Canterbury, Department of Economics and Finance.
    18. Huang, Biing-Wen & Chen, Meng-Gu & Chang, Chia-Lin & McAleer, Michael, 2009. "Modelling risk in agricultural finance: Application to the poultry industry in Taiwan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1472-1487.
    19. Shi Chen & Cathy Yi-Hsuan Chen & Wolfgang Karl Hardle, 2020. "A first econometric analysis of the CRIX family," Papers 2009.12129, arXiv.org.
    20. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.

    More about this item

    Keywords

    Gegenbauer process; Wavelet analysis; Generalized variance portmanteau test; Heteroskedasticity; Monte-Carlo simulation; CPI; C13; C15; C22;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:46:y:2015:i:4:p:551-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.