Advanced Search
MyIDEAS: Login

Estimation of k-factor GIGARCH process : a Monte Carlo study

Contents:

Author Info

Abstract

In this paper, we discuss the parameter estimation for a k-factor generalized long memory process with conditionally heteroskedastic noise. Two estimation methods are proposed. The first method is based on the conditional distribution of the process and the second is obtained as an extension of Whittle's estimation approach. For comparison purposes, Monte Carlo simulations are used to evaluate the finite sample performance of these estimation techniques.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2008/B08004.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne in its series Documents de travail du Centre d'Economie de la Sorbonne with number b08004.

as in new window
Length: 18 pages
Date of creation: Jan 2008
Date of revision:
Handle: RePEc:mse:cesdoc:b08004

Contact details of provider:
Postal: 106-112 boulevard de l'Hôpital 75 647 PARIS CEDEX 13
Phone: + 33 44 07 81 00
Fax: + 33 1 44 07 83 01
Web page: http://centredeconomiesorbonne.univ-paris1.fr/
More information through EDIRC

Related research

Keywords: Long memory; Gegenbauer polynomial; heteroskedasticity; conditional sum of squares; Whittle estimation.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Abdou Kâ Diongue & Dominique Guegan, 2004. "Estimating parameters for a k-GIGARCH process," Post-Print halshs-00188531, HAL.
  2. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
  3. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
  4. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the "t"-distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174.
  5. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
  6. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  7. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  8. Giraitis, Liudas & Robinson, Peter M., 2001. "Whittle Estimation Of Arch Models," Econometric Theory, Cambridge University Press, vol. 17(03), pages 608-631, June.
  9. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:b08004. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.