Advanced Search
MyIDEAS: Login

Asymptotic prediction of mean squared error for long-memory processes with estimated parameters


Author Info

  • Naoya Katayama

    (Faculty of Economics, Kyushu University, Fukuoka, Japan)

Registered author(s):


    In this paper we deal with the prediction theory of long-memory time series. The purpose is to derive a general theory of the convergence of moments of the nonlinear least squares estimator so as to evaluate the asymptotic prediction mean squared error (PMSE). The asymptotic PMSE of two predictors is evaluated. The first is defined by the estimator of the differencing parameter, while the second is defined by a fixed differencing parameter: in other words, a parametric predictor of the seasonal autoregressive integrated moving average model. The effects of misspecifying the differencing parameter is a long-memory model are clarified by the asymptotic results relating to the PMSE. The finite sample behaviour of the predictor and the model selection in terms of PMSE of the two predictors are examined using simulation, and the source of any differences in behaviour made clear in terms of asymptotic theory. Copyright © 2008 John Wiley & Sons, Ltd.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    Bibliographic Info

    Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

    Volume (Year): 27 (2008)
    Issue (Month): 8 ()
    Pages: 690-720

    as in new window
    Handle: RePEc:jof:jforec:v:27:y:2008:i:8:p:690-720

    Contact details of provider:
    Web page:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:27:y:2008:i:8:p:690-720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.