Advanced Search
MyIDEAS: Login to save this article or follow this journal

Updating ARMA predictions for temporal aggregates

Contents:

Author Info

  • Yue Fang
  • Sergio G. Koreisha

    (University of Oregon, USA)

Registered author(s):

Abstract

This article develops and extends previous investigations on the temporal aggregation of ARMA predications. Given a basic ARMA model for disaggregated data, two sets of predictors may be constructed for future temporal aggregates: predictions based on models utilizing aggregated data or on models constructed from disaggregated data for which forecasts are updated as soon as the new information becomes available. We show that considerable gains in efficiency based on mean-square-error-type criteria can be obtained for short-term predications when using models based on updated disaggregated data. However, as the prediction horizon increases, the gain in using updated disaggregated data diminishes substantially. In addition to theoretical results associated with forecast efficiency of ARMA models, we also illustrate our findings with two well-known time series. Copyright © 2004 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/for.913
File Function: Link to full text; subscription required
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 23 (2004)
Issue (Month): 4 ()
Pages: 275-296

as in new window
Handle: RePEc:jof:jforec:v:23:y:2004:i:4:p:275-296

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Andrea, SILVESTRINI, 2005. "Temporal aggregaton of univariate linear time series models," Discussion Papers (ECON - Département des Sciences Economiques) 2005044, Université catholique de Louvain, Département des Sciences Economiques.
  2. Ramirez, Octavio A., 2012. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 123470, Agricultural and Applied Economics Association.
  3. Garcia-Ferrer, A. & de Juan, A. & Poncela, P., 2006. "Forecasting traffic accidents using disaggregated data," International Journal of Forecasting, Elsevier, vol. 22(2), pages 203-222.
  4. Andrea Silvestrini & Matteo Salto & Laurent Moulin & David Veredas, 2008. "Monitoring and forecasting annual public deficit every month: the case of France," Empirical Economics, Springer, vol. 34(3), pages 493-524, June.
  5. Ramirez, Octavio A., 2011. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," Faculty Series 113520, University of Georgia, Department of Agricultural and Applied Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:23:y:2004:i:4:p:275-296. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.