IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2013-141-3.html
   My bibliography  Save this article

From Participants to Agents: Grounded Simulation as a Mixed-Method Research Design

Author

Abstract

This paper introduces a mixed-method research design for investigating complexity of social reality. The research design integrates grounded theory (Glaser and Strauss, 1967) and social simulation and is therefore called grounded simulation (GS). GS starts with in-depth investigations of complex social phenomena from perspectives of people who experience them. These investigations follow principles of grounded theory and enquire into contexts that research participants describe and the way they make sense of action in these contexts. Data analysis progresses inductively and outwards, from narratives of people who are at the centre of the phenomena to emerging constructs and theories. While the grounded theory fieldwork would have its own research outputs, its selected findings can be then carried to agent-based models for further investigation of social complexity. By representing social and economic agents, their contexts and actions as closely as possible, GS shortens the distance between research participants, who have real life experiences of the subject being modelled, and the virtual agents. Knowledge production in social simulation progresses generatively and upwards, moving from interactions at the individual level to emergent properties at the macro-level. GS experiments are thus suitable for studying the societal implications of meanings that emerge from the data collected in grounded theory. The paper illustrates how this research design can be used, by referring to a GS study on diffusion of innovations.

Suggested Citation

  • Ozge Dilaver, 2015. "From Participants to Agents: Grounded Simulation as a Mixed-Method Research Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(1), pages 1-15.
  • Handle: RePEc:jas:jasssj:2013-141-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/1/15/15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joshua M. Epstein, 2008. "Why Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-12.
    2. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    3. Olivier Barreteau, 2003. "Our Companion Modelling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-1.
    4. Riccardo Boero & Flaminio Squazzoni, 2005. "Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for Analytical Social Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-6.
    5. Dilaver, Özge, 2014. "Involuntary technology adoptions: How consumer interdependencies lead to societal change," Structural Change and Economic Dynamics, Elsevier, vol. 31(C), pages 138-148.
    6. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    7. Annie Waldherr & Nanda Wijermans, 2013. "Communicating Social Simulation Models to Sceptical Minds," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(4), pages 1-13.
    8. Jennifer F. Reinganum, 1981. "On the Diffusion of New Technology: A Game Theoretic Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 48(3), pages 395-405.
    9. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    10. Lu Yang & Nigel Gilbert, 2008. "Getting Away From Numbers: Using Qualitative Observation For Agent-Based Modeling," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 175-185.
    11. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    2. Sahar Shahpari & Janelle Allison & Matthew Tom Harrison & Roger Stanley, 2021. "An Integrated Economic, Environmental and Social Approach to Agricultural Land-Use Planning," Land, MDPI, vol. 10(4), pages 1-18, April.
    3. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friederike Wall, 2016. "Agent-based modeling in managerial science: an illustrative survey and study," Review of Managerial Science, Springer, vol. 10(1), pages 135-193, January.
    2. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    3. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046.
    4. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    5. Georg Jäger & Laura S. Zilian & Christian Hofer & Manfred Füllsack, 2019. "Crowdworking: working with or against the crowd?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 761-788, December.
    6. Váry, Miklós, 2018. "A hiszterézis közgazdasági jelentőségéről posztkeynesi szemléletben [The economic relevance of hysteresis from a post-Keynesian perspective]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1006-1047.
    7. Tommaso Ciarli & Karolina Safarzynska, 2020. "Sustainability and Industrial Challenge: The Hindering Role of Complexity," SPRU Working Paper Series 2020-18, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Müller, Matthias & Kudic, Muhamed & Vermeulen, Ben, 2021. "The influence of the structure of technological knowledge on inter-firm R&D collaboration and knowledge discovery: An agent-based simulation approach," Journal of Business Research, Elsevier, vol. 129(C), pages 570-579.
    9. Thiele, Jan C, 2014. "R Marries NetLogo: Introduction to the RNetLogo Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i02).
    10. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    11. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    13. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    14. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    15. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    16. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    17. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    18. Sarah Wolf & Steffen Fürst & Antoine Mandel & Wiebke Lass & Daniel Lincke & Federico Pablo-Marti & Carlo Jaeger, 2013. "A multi-agent model of several economic regions," PSE - Labex "OSE-Ouvrir la Science Economique" halshs-00825217, HAL.
    19. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    20. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2013-141-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.