IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h048752.html
   My bibliography  Save this article

Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV [Unmanned Aerial Vehicle] capability

Author

Listed:
  • Nhamo, Luxon
  • van Dijk, R.
  • Magidi, J.
  • Wiberg, David
  • Tshikolomo, K.

Abstract

Although advances in remote sensing have enhanced mapping and monitoring of irrigated areas, producing accurate cropping information through satellite image classification remains elusive due to the complexity of landscapes, changes in reflectance of different land-covers, the remote sensing data selected, and image processing methods used, among others. This study extracted agricultural fields in the former homelands of Venda and Gazankulu in Limpopo Province, South Africa. Landsat 8 imageries for 2015 were used, applying the maximum likelihood supervised classifier to delineate the agricultural fields. The normalized difference vegetation index (NDVI) applied on Landsat imageries on the mapped fields during the dry season (July to August) was used to identify irrigated areas, because years of satellite data analysis suggest that healthy crop conditions during dry seasons are only possible with irrigation. Ground truth points totaling 137 were collected during fieldwork for pre-processing and accuracy assessment. An accuracy of 96% was achieved on the mapped agricultural fields, yet the irrigated area map produced an initial accuracy of only 71%. This study explains and improves the 29% error margin from the irrigated areas. Accuracy was enhanced through post-classification correction (PCC) using 74 post-classification points randomly selected from the 2015 irrigated area map. High resolution aerial photographs of the 74 sample fields were acquired by an unmanned aerial vehicle (UAV) to give a clearer picture of the irrigated fields. The analysis shows that mapped irrigated fields that presented anomalies included abandoned croplands that had green invasive alien species or abandoned fruit plantations that had high NDVI values. The PCC analysis improved irrigated area mapping accuracy from 71% to 95%.

Suggested Citation

  • Nhamo, Luxon & van Dijk, R. & Magidi, J. & Wiberg, David & Tshikolomo, K., 2018. "Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV [Unmanned Aerial Vehicle] capability," Papers published in Journals (Open Access), International Water Management Institute, pages 10(5):1-12..
  • Handle: RePEc:iwt:jounls:h048752
    DOI: 10.3390/rs10050712
    as

    Download full text from publisher

    File URL: http://www.mdpi.com/2072-4292/10/5/712/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.3390/rs10050712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Koppen, Barbara & Nhamo, Luxon & Cai, Xueliang & Gabriel, M. J. & Sekgala, M. & Shikwambana, S. & Tshikolomo, K. & Nevhutanda, S. & Matlala, B. & Manyama, D., 2017. "Smallholder irrigation schemes in the Limpopo Province, South Africa," IWMI Water Policy Briefings 257964, International Water Management Institute.
    2. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    3. Graeub, Benjamin E. & Chappell, M. Jahi & Wittman, Hannah & Ledermann, Samuel & Kerr, Rachel Bezner & Gemmill-Herren, Barbara, 2016. "The State of Family Farms in the World," World Development, Elsevier, vol. 87(C), pages 1-15.
    4. Awulachew, Seleshi Bekele, 2007. "Water resources and irrigation development in Ethiopia," IWMI Working Papers H040631, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brewer, K. & Clulow, A. & Sibanda, M. & Gokool, S. & Naiken, V. & Mabhaudhi, Tafadzwanashe, 2022. "Predicting the chlorophyll content of maize over phenotyping as a proxy for crop health in smallholder farming systems," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(3):518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    2. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    3. Torres Franco, Nicolás Arturo & Dávalos, Eleonora & Morales, Leonardo Fabio, 2021. "Heterogeneous Effects of Agricultural Technical Assistance in Colombia," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 53(4), pages 459-481, November.
    4. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    5. Ayanda Nyambali & Mthunzi Mndela & Tlou Julius Tjelele & Cletos Mapiye & Phillip Evert Strydom & Emiliano Raffrenato & Kennedy Dzama & Voster Muchenje & Ntuthuko Raphael Mkhize, 2022. "Growth Performance, Carcass Characteristics and Economic Viability of Nguni Cattle Fed Diets Containing Graded Levels of Opuntia ficus-indica," Agriculture, MDPI, vol. 12(7), pages 1-13, July.
    6. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    7. Viviany Moura Chaves & Cecília Rocha & Sávio Marcelino Gomes & Michelle Cristine Medeiros Jacob & João Bosco Araújo da Costa, 2023. "Integrating Family Farming into School Feeding: A Systematic Review of Challenges and Potential Solutions," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Herrera, Gabriel Paes & Lourival, Reinaldo & da Costa, Reginaldo Brito & Mendes, Dany Rafael Fonseca & Moreira, Tito Belchior Silva & de Abreu, Urbano Gomes Pinto & Constantino, Michel, 2018. "Econometric analysis of income, productivity and diversification among smallholders in Brazil," Land Use Policy, Elsevier, vol. 76(C), pages 455-459.
    9. Srigiri, Srinivasa Reddy & Breuer, Anita & Scheumann, Waltina, 2021. "Mechanisms for governing the water-land-food nexus in the lower Awash River Basin, Ethiopia: Ensuring policy coherence in the implementation of the 2030 Agenda," IDOS Discussion Papers 26/2021, German Institute of Development and Sustainability (IDOS).
    10. Kifle, Mulubrehan & Gebremicael, T.G. & Girmay, Abbadi & Gebremedihin, Teferi, 2017. "Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia," Agricultural Water Management, Elsevier, vol. 187(C), pages 69-76.
    11. Shewit Gebremedhin & Abebe Getahun & Wassie Anteneh & Stijn Bruneel & Peter Goethals, 2018. "A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    12. Delmond, Anthony R. & Ahmed, Haseeb, 2021. "Optimal Antimicrobial Use under Countervailing Externalities," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 46(3), September.
    13. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    14. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    15. Tina D. Beuchelt & Rafaël Schneider & Liliana Gamba, 2022. "Integrating the right to food in sustainability standards: A theory of change to move global supply chains from responsibilities to impacts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1864-1889, December.
    16. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    17. Ghinoi, Stefano & Wesz Junior, Valdemar João & Piras, Simone, 2018. "Political debates and agricultural policies: Discourse coalitions behind the creation of Brazil’s Pronaf," Land Use Policy, Elsevier, vol. 76(C), pages 68-80.
    18. Boza, S. & Mora, M. & Osorio, F. & Munoz, J., 2018. "Family farmer attitudes toward incorporating into the formal economy," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276960, International Association of Agricultural Economists.
    19. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    20. Delmond, Anthony & Ahmed, Haseeb, 2018. "Can Free-Riding Be Beneficial? Optimal Antimicrobial Use Under Free-Riding And Resistance Externalities," Working Papers 2018-2, School of Economic Sciences, Washington State University.

    More about this item

    Keywords

    Irrigated sites;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h048752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.