IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v43y2009i2p211-227.html
   My bibliography  Save this article

Delivering Goods in Urban Areas: How to Deal with Urban Policy Restrictions and the Environment

Author

Listed:
  • H. J. (Hans) Quak

    (TNO Built Environment and Geosciences---Business Unit Mobility and Logistics, 2600 AA Delft, The Netherlands)

  • M. (René) B. M. de Koster

    (Rotterdam School of Management, Erasmus University, 3000 DR Rotterdam, The Netherlands)

Abstract

Time-access regulations and vehicle restrictions are increasingly used, especially in western Europe, to improve social sustainability in urban areas. These regulations considerably affect the distribution process of retail chain organizations as well as the environmental burden. This paper studies the impact of governmental time windows, vehicle restrictions, and different retailers' logistical concepts on the financial and environmental performance of retailers. We use a case study with two cases that differ in their drop sizes as input for an experiment. The retailers provided all organizational, flow, and cost data of the distribution process between their distribution centers and their stores. We use these data to calculate the impacts of different scenarios on the retailers' financial and environmental performances based on a fractional factorial design in which urban policies and the retailers' logistical concepts are varied, using vehicle routing software. We test the propositions with a third case. We show that the cost impact of time windows is the largest for retailers who combine many deliveries in one vehicle round-trip. The cost increase due to vehicle restrictions is the largest for retailers whose round-trip lengths are restricted by vehicle capacity. Vehicle restrictions and time windows together do not increase a retailer's cost more than individually. Variations in delivery volume and store dispersion hardly influence the impact of urban policy and the retailer's logistical concept decisions.

Suggested Citation

  • H. J. (Hans) Quak & M. (René) B. M. de Koster, 2009. "Delivering Goods in Urban Areas: How to Deal with Urban Policy Restrictions and the Environment," Transportation Science, INFORMS, vol. 43(2), pages 211-227, May.
  • Handle: RePEc:inm:ortrsc:v:43:y:2009:i:2:p:211-227
    DOI: 10.1287/trsc.1080.0235
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1080.0235
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1080.0235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    2. Dablanc, Laetitia, 2007. "Goods transport in large European cities: Difficult to organize, difficult to modernize," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 280-285, March.
    3. Holgui­n-Veras, José & Wang, Qian & Xu, Ning & Ozbay, Kaan & Cetin, Mecit & Polimeni, John, 2006. "The impacts of time of day pricing on the behavior of freight carriers in a congested urban area: Implications to road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(9), pages 744-766, November.
    4. A Poot & G Kant & A P M Wagelmans, 2002. "A savings based method for real-life vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 57-68, January.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    6. Piet H. L. Bovy, 2001. "Traffic flooding the low countries: How the Dutch cope with motorway congestion," Transport Reviews, Taylor & Francis Journals, vol. 21(1), pages 89-116, January.
    7. Jean-Pierre Nicolas & Pascal Pochet & Hélène Poimboeuf, 2003. "Towards Sustainable Mobility Indicators: Application to the Lyons Conurbation," Post-Print halshs-00068232, HAL.
    8. Nicolas, J. -P. & Pochet, P. & Poimboeuf, H., 2003. "Towards sustainable mobility indicators: application to the Lyons conurbation," Transport Policy, Elsevier, vol. 10(3), pages 197-208, July.
    9. Quak, H.J. & de Koster, M.B.M., 2006. "Urban Distribution: The Impacts of Different Governmental Time-Window Schemes," ERIM Report Series Research in Management ERS-2006-053-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Chopra, Sunil, 2003. "Designing the distribution network in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(2), pages 123-140, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    2. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    3. Peter Matis & Michal Koháni, 2011. "Very large street routing problem with mixed transportation mode," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(3), pages 359-369, September.
    4. Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
    5. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    6. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    7. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    8. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    9. Gerhard Hiermann & Matthias Prandtstetter & Andrea Rendl & Jakob Puchinger & Günther Raidl, 2015. "Metaheuristics for solving a multimodal home-healthcare scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 89-113, March.
    10. Zhang, Ruiyou & Yun, Won Young & Moon, Il Kyeong, 2011. "Modeling and optimization of a container drayage problem with resource constraints," International Journal of Production Economics, Elsevier, vol. 133(1), pages 351-359, September.
    11. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    12. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    14. Chiang, Wen-Chyuan & Russell, Robert & Xu, Xiaojing & Zepeda, David, 2009. "A simulation/metaheuristic approach to newspaper production and distribution supply chain problems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 752-767, October.
    15. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.
    16. Charles Raux, 2008. "Tradable driving rights in urban areas: their potential for tackling congestion and traffic-related pollution," Post-Print halshs-00185012, HAL.
    17. Maaike Hoogeboom & Wout Dullaert & David Lai & Daniele Vigo, 2020. "Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 54(2), pages 400-416, March.
    18. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    19. Nicolas, Jean-Pierre & Pelé, Nicolas, 2018. "Reprint of Measuring trends in household expenditures for daily mobility. The case in Lyon, France, between 1995 and 2015," Transport Policy, Elsevier, vol. 65(C), pages 19-29.
    20. Giulio Mario Cappelletti & Luca Grilli & Carlo Russo & Domenico Santoro, 2023. "Benchmarking Sustainable Mobility in Higher Education," Sustainability, MDPI, vol. 15(6), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:43:y:2009:i:2:p:211-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.