IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i3p840-854.html
   My bibliography  Save this article

Minimizing the maximal ergonomic burden in intra-hospital patient transportation

Author

Listed:
  • Fröhlich von Elmbach, Alexander
  • Scholl, Armin
  • Walter, Rico

Abstract

The transportation of patients within a hospital concerns three main groups. Firstly, the hospital managers, who must ensure an efficient transport system with sufficient porters so that delays of surgeries or examinations are (mostly) avoided. Secondly, the patients, for whom waiting times before and after appointments should not be too long. And thirdly, the porters, who carry out the physical transport of patients within the hospital. This last group faces high physical liability as well as risks of illnesses and injuries due to work-related musculoskeletal disorders. Despite these facts, the porters’ interests are often neglected in current research. This paper integrates the needs of all three aforementioned groups into a mathematical model, which is solved with the help of a tailored tabu search algorithm. Computational experiments reveal that the new procedure is able to find high-quality solutions in a very short time. Most often, the obtained solutions are even optimal. They also significantly improve upon those generated by a typical real-world planning approach. Furthermore, the trade-off between the interests of all three groups is analyzed.

Suggested Citation

  • Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:840-854
    DOI: 10.1016/j.ejor.2019.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    4. Alena Otto & Nils Boysen & Armin Scholl & Rico Walter, 2017. "Ergonomic workplace design in the fast pick area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 945-975, October.
    5. Wan, Guohua & Yen, Benjamin P. -C., 2002. "Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 142(2), pages 271-281, October.
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    7. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.
    8. Verena Schmid & Karl F. Doerner, 2014. "Examination and Operating Room Scheduling Including Optimization of Intrahospital Routing," Transportation Science, INFORMS, vol. 48(1), pages 59-77, February.
    9. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    10. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    11. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
    12. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    13. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    14. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    15. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    16. Wipawee Tharmmaphornphilas & Bryan Norman, 2007. "A methodology to create robust job rotation schedules," Annals of Operations Research, Springer, vol. 155(1), pages 339-360, November.
    17. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    18. Michael R. Garey & Robert E. Tarjan & Gordon T. Wilfong, 1988. "One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 330-348, May.
    19. Roberto Battiti & Giampietro Tecchiolli, 1994. "The Reactive Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 126-140, May.
    20. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    21. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    22. Niaz A. Wassan & A. Hameed Wassan & Gábor Nagy, 2008. "A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries," Journal of Combinatorial Optimization, Springer, vol. 15(4), pages 368-386, May.
    23. Kergosien, Y. & Lenté, Ch. & Piton, D. & Billaut, J.-C., 2011. "A tabu search heuristic for the dynamic transportation of patients between care units," European Journal of Operational Research, Elsevier, vol. 214(2), pages 442-452, October.
    24. Mauro Dell’Amico & Silvano Martello, 1995. "Optimal Scheduling of Tasks on Identical Parallel Processors," INFORMS Journal on Computing, INFORMS, vol. 7(2), pages 191-200, May.
    25. Huguette Beaulieu & Jacques Ferland & Bernard Gendron & Philippe Michelon, 2000. "A mathematical programming approach for scheduling physicians in the emergency room," Health Care Management Science, Springer, vol. 3(3), pages 193-200, June.
    26. Thomas Hanne & Teresa Melo & Stefan Nickel, 2009. "Bringing Robustness to Patient Flow Management Through Optimized Patient Transports in Hospitals," Interfaces, INFORMS, vol. 39(3), pages 241-255, June.
    27. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    28. Paolo Toth & Daniele Vigo, 1997. "Heuristic Algorithms for the Handicapped Persons Transportation Problem," Transportation Science, INFORMS, vol. 31(1), pages 60-71, February.
    29. Danny Segev & Retsef Levi & Peter Dunn & Warren Sandberg, 2012. "Modeling the impact of changing patient transportation systems on peri-operative process performance in a large hospital: insights from a computer simulation study," Health Care Management Science, Springer, vol. 15(2), pages 155-169, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    2. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    3. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    4. Han, Shuihua & Zhao, Ling & Chen, Kui & Luo, Zong-wei & Mishra, Deepa, 2017. "Appointment scheduling and routing optimization of attended home delivery system with random customer behavior," European Journal of Operational Research, Elsevier, vol. 262(3), pages 966-980.
    5. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    6. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    7. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    8. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    9. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2018. "An optimization approach for designing routes in metrological control services: a case study," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 924-952, December.
    10. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    11. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    12. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    13. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    14. Weiwei Chen & Jie Song & Leyuan Shi & Liang Pi & Peter Sun, 2013. "Data mining-based dispatching system for solving the local pickup and delivery problem," Annals of Operations Research, Springer, vol. 203(1), pages 351-370, March.
    15. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    16. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    17. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.
    18. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    19. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.
    20. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:840-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.