IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i2p469-482.html
   My bibliography  Save this article

Basis Paths and a Polynomial Algorithm for the Multistage Production-Capacitated Lot-Sizing Problem

Author

Listed:
  • Hark-Chin Hwang

    (School of Management, Kyung Hee University, Seoul 130-701, Republic of Korea)

  • Hyun-Soo Ahn

    (Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109)

  • Philip Kaminsky

    (Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720)

Abstract

We consider the multilevel lot-sizing problem with production capacities (MLSP-PC), in which production and transportation decisions are made for a serial supply chain with capacitated production and concave cost functions. Existing approaches to the multistage version of this problem are limited to nonspeculative cost functions---up to now, no algorithm for the multistage version of this model with general concave cost functions has been developed. In this paper, we develop the first polynomial algorithm for the MLSP-PC with general concave costs at all of the stages, and we introduce a novel approach to overcome the limitations of previous approaches. In contrast to traditional approaches to lot-sizing problems, in which the problem is decomposed by time periods and is analyzed unidirectionally in time, we solve the problem by introducing the concept of a basis path, which is characterized by time and stage. Our dynamic programming algorithm proceeds both forward and backward in time along this basis path, enabling us to solve the problem in polynomial time.

Suggested Citation

  • Hark-Chin Hwang & Hyun-Soo Ahn & Philip Kaminsky, 2013. "Basis Paths and a Polynomial Algorithm for the Multistage Production-Capacitated Lot-Sizing Problem," Operations Research, INFORMS, vol. 61(2), pages 469-482, April.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:469-482
    DOI: 10.1287/opre.1120.1141
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1141
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    2. Willard I. Zangwill, 1968. "Minimum Concave Cost Flows in Certain Networks," Management Science, INFORMS, vol. 14(7), pages 429-450, March.
    3. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    4. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    5. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    6. Willard I. Zangwill, 1966. "A Deterministic Multiproduct, Multi-Facility Production and Inventory Model," Operations Research, INFORMS, vol. 14(3), pages 486-507, June.
    7. Willard I. Zangwill, 1969. "A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System--A Network Approach," Management Science, INFORMS, vol. 15(9), pages 506-527, May.
    8. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    9. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    10. Chung-Yee Lee & Sila Çetinkaya & Wikrom Jaruphongsa, 2003. "A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse," Operations Research, INFORMS, vol. 51(5), pages 735-747, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hark-Chin Hwang & Hyun-Soo Ahn & Philip Kaminsky, 2016. "Algorithms for the two-stage production-capacitated lot-sizing problem," Journal of Global Optimization, Springer, vol. 65(4), pages 777-799, August.
    2. Giri, B.C. & Bardhan, Sudarshan, 2017. "Sub-supply chain coordination in a three-layer chain under demand uncertainty and random yield in production," International Journal of Production Economics, Elsevier, vol. 191(C), pages 66-73.
    3. Jing, Fuying & Chao, Xiangrui, 2022. "Forecast horizons for a two-echelon dynamic lot-sizing problem," Omega, Elsevier, vol. 110(C).
    4. Bunn, Kevin A. & Ventura, José A., 2023. "A dynamic programming approach for the two-product capacitated lot-sizing problem with concave costs," European Journal of Operational Research, Elsevier, vol. 307(1), pages 116-129.
    5. Radha Mookerjee & Subodha Kumar & Vijay S. Mookerjee, 2017. "Optimizing Performance-Based Internet Advertisement Campaigns," Operations Research, INFORMS, vol. 65(1), pages 38-54, February.
    6. Hadi Farhangi, 2021. "Multi-Echelon Supply Chains with Lead Times and Uncertain Demands," SN Operations Research Forum, Springer, vol. 2(3), pages 1-25, September.
    7. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    8. Radha Mookerjee & Subodha Kumar & Vijay S. Mookerjee, 2017. "Optimizing Performance-Based Internet Advertisement Campaigns," Operations Research, INFORMS, vol. 65(1), pages 38-54, February.
    9. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    10. Zhen Sun & Milind Dawande & Ganesh Janakiraman & Vijay Mookerjee, 2017. "Not Just a Fad: Optimal Sequencing in Mobile In-App Advertising," Information Systems Research, INFORMS, vol. 28(3), pages 511-528, September.
    11. Wu, Kan & Yuan, Xue-Ming, 2016. "Optimal production-inventory policy for an integrated multi-stage supply chain with time-varying demandAuthor-Name: Zhao, Shi Tao," European Journal of Operational Research, Elsevier, vol. 255(2), pages 364-379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Hark-Chin & Kang, Jangha, 2020. "The two-level lot-sizing problem with outbound shipment," Omega, Elsevier, vol. 90(C).
    2. Minjiao Zhang & Simge Küçükyavuz & Hande Yaman, 2012. "A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands," Operations Research, INFORMS, vol. 60(4), pages 918-935, August.
    3. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    4. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    5. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    6. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    7. Romeijn, H.E. & van den Heuvel, W.J. & Geunes, J., 2012. "Mitigating the Cost of Anarchy in Supply Chain Systems," Econometric Institute Research Papers EI 2012-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    9. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    10. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    11. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.
    12. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    13. Wolsey, Laurence A., 1995. "Progress with single-item lot-sizing," European Journal of Operational Research, Elsevier, vol. 86(3), pages 395-401, November.
    14. Eksioglu, Sandra Duni, 2009. "A primal-dual algorithm for the economic lot-sizing problem with multi-mode replenishment," European Journal of Operational Research, Elsevier, vol. 197(1), pages 93-101, August.
    15. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    16. Hwang, Hark-Chin & Kang, Jangha, 2021. "An improved algorithm for the lot-sizing problem with outbound shipment," Omega, Elsevier, vol. 100(C).
    17. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    18. Hwang, Hark-Chin & Kang, Jangha, 2016. "Two-phase algorithm for the lot-sizing problem with backlogging for stepwise transportation cost without speculative motives," Omega, Elsevier, vol. 59(PB), pages 238-250.
    19. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P.M. Wagelmans, 2002. "Polynomial Time Algorithms for Some Multi-Level Lot-Sizing Problems with Production Capacities," Tinbergen Institute Discussion Papers 02-066/4, Tinbergen Institute.
    20. Siao-Leu Phouratsamay & Safia Kedad-Sidhoum & Fanny Pascual, 2021. "Coordination of a two-level supply chain with contracts," 4OR, Springer, vol. 19(2), pages 235-264, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:469-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.