IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v53y2005i5p799-818.html
   My bibliography  Save this article

A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets

Author

Listed:
  • Steven A. Gabriel

    (Project Management Program, Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland 20742)

  • Supat Kiet

    (Project Management Program, Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland 20742)

  • Jifang Zhuang

    (Project Management Program, Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland 20742)

Abstract

We present a new multiseasonal, multiyear, natural gas market equilibrium model based on the concept of a competitive equilibrium involving the market participants: producers, storage reservoir operators, peak gas operators, pipeline operators, marketers, and consumers. The first three classes are depicted as price-takers consistent with perfect competition. The pipeline operations are described with regulated tariffs, but also involve “congestion pricing” as a mechanism to allocate scarce pipeline capacity. The marketers are price-takers in all markets except in sales to consumers, in which they compete as Nash-Cournot players. Finally, consumers are described by demand curves for each of the four sectors: residential, commercial, industrial, and electric power. We show that the equilibrium model is an instance of a mixed nonlinear complementarity problem (NCP) and provide sufficient detail not generally seen in previous complementarity models of natural gas. The NCP formulation is derived from considering the Karush-Kuhn-Tucker optimality conditions of the optimization problems faced by these participants. Under mild conditions, we show that this NCP has a solution, and under additional reasonable conditions, we show that the market prices are unique. We also validate the model on a representative sample network with nine market participants and three seasons, using four scenarios.

Suggested Citation

  • Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
  • Handle: RePEc:inm:oropre:v:53:y:2005:i:5:p:799-818
    DOI: 10.1287/opre.1040.0199
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0199
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean-Michel Guldmann, 1986. "A Marginal-Cost Pricing Model for Gas Distribution Utilities," Operations Research, INFORMS, vol. 34(6), pages 851-863, December.
    2. William Avery & Gerald G. Brown & John A. Rosenkranz & R. Kevin Wood, 1992. "Optimization of Purchase, Storage and Transmission Contracts for Natural Gas Utilities," Operations Research, INFORMS, vol. 40(3), pages 446-462, June.
    3. Byong-Hun Ahn & William W. Hogan, 1982. "On Convergence of the PIES Algorithm for Computing Equilibria," Operations Research, INFORMS, vol. 30(2), pages 281-300, April.
    4. Gabriel, Steven A. & Zhuang, Jifang & Kiet, Supat, 2005. "A large-scale linear complementarity model of the North American natural gas market," Energy Economics, Elsevier, vol. 27(4), pages 639-665, July.
    5. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. De Wolf, D. & Smeers, Y., 1996. "Optimal dimensioning of pipe networks with application to gas transmission networks," LIDAM Reprints CORE 1249, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. McBride, Richard D., 1985. "Solving embedded generalized network problems," European Journal of Operational Research, Elsevier, vol. 21(1), pages 82-92, July.
    8. Daniel de Wolf & Yves Smeers, 1996. "Optimal Dimensioning of Pipe Networks with Application to Gas Transmission Networks," Operations Research, INFORMS, vol. 44(4), pages 596-608, August.
    9. Richard P. O'Neill & Mark Williard & Bert Wilkins & Ralph Pike, 1979. "A Mathematical Programming Model for Allocation of Natural Gas," Operations Research, INFORMS, vol. 27(5), pages 857-873, October.
    10. Rolf Golombek & Eystein Gjelsvik & Knut Einar Rosendahl, 1998. "Increased Competition on the Supply Side of the Western European Natural Gas Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-18.
    11. De Wolf, D. & Smeers, Y., 1997. "A stochastic version of a Stackelberg-Nash-Cournot equilibrium model," LIDAM Reprints CORE 1257, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Daniel De Wolf & Yves Smeers, 1997. "A Stochastic Version of a Stackelberg-Nash-Cournot Equilibrium Model," Management Science, INFORMS, vol. 43(2), pages 190-197, February.
    13. Maroeska G. Boots, Fieke A.M. Rijkers and Benjamin F. Hobbs, 2004. "Trading in the Downstream European Gas Market: A Successive Oligopoly Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-102.
    14. Terry L. Friesz & Joel A. Gottfried & Edward K. Morlok, 1986. "A Sequential Shipper-Carrier Network Model for Predicting Freight Flows," Transportation Science, INFORMS, vol. 20(2), pages 80-91, May.
    15. SMEERS, Yves & WEI, Jing-Yuan, 1997. "Do we need a power exchange if there are enough power marketers ?," LIDAM Discussion Papers CORE 1997060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Gabriel, Steven A. & Vikas, Shree & Ribar, David M., 2000. "Measuring the influence of Canadian carbon stabilization programs on natural gas exports to the United States via a 'bottom-up' intertemporal spatial price equilibrium model," Energy Economics, Elsevier, vol. 22(5), pages 497-525, October.
    17. Breton, Michele & Zaccour, Georges, 2001. "Equilibria in an asymmetric duopoly facing a security constraint," Energy Economics, Elsevier, vol. 23(4), pages 457-475, July.
    18. Egging, Rudolf G. & Gabriel, Steven A., 2006. "Examining market power in the European natural gas market," Energy Policy, Elsevier, vol. 34(17), pages 2762-2778, November.
    19. Rolf Golombek & Eystein Gjelsvik & Knut Einar Rosendahl, 1995. "Effects of Liberalizing the Natural Gas Markets in Western Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 85-112.
    20. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    21. Frederic H. Murphy & John J. Conti & Susan H. Shaw & Reginald Sanders, 1988. "Modeling and Forecasting Energy Markets with the Intermediate Future Forecasting System," Operations Research, INFORMS, vol. 36(3), pages 406-420, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GABRIEL, Steven & SMEERS, Yves, 2005. "Complementarity problems in restructured natural gas markets," LIDAM Discussion Papers CORE 2005037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Gabriel, Steven A. & Zhuang, Jifang & Kiet, Supat, 2005. "A large-scale linear complementarity model of the North American natural gas market," Energy Economics, Elsevier, vol. 27(4), pages 639-665, July.
    3. Egging, Rudolf G. & Gabriel, Steven A., 2006. "Examining market power in the European natural gas market," Energy Policy, Elsevier, vol. 34(17), pages 2762-2778, November.
    4. Gasmi, Farid & Oviedo, Juan Daniel, 2010. "Investment in transport infrastructure, regulation, and gas-gas competition," Energy Economics, Elsevier, vol. 32(3), pages 726-736, May.
    5. Gasmi, Farid & Oviedo, Juan Daniel, 2009. "Investment in Transport Infrastructure, and Gas-Gas Competition," TSE Working Papers 09-121, Toulouse School of Economics (TSE).
    6. Csercsik, Dávid & Hubert, Franz & Sziklai, Balázs R. & Kóczy, László Á., 2019. "Modeling transfer profits as externalities in a cooperative game-theoretic model of natural gas networks," Energy Economics, Elsevier, vol. 80(C), pages 355-365.
    7. Lise, Wietze & Hobbs, Benjamin F., 2008. "Future evolution of the liberalised European gas market: Simulation results with a dynamic model," Energy, Elsevier, vol. 33(7), pages 989-1004.
    8. Lise, Wietze & Hobbs, Benjamin F. & van Oostvoorn, Frits, 2008. "Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model," Energy Policy, Elsevier, vol. 36(6), pages 1890-1906, June.
    9. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    10. Egging, Ruud & Gabriel, Steven A. & Holz, Franziska & Zhuang, Jifang, 2008. "A complementarity model for the European natural gas market," Energy Policy, Elsevier, vol. 36(7), pages 2385-2414, July.
    11. Chyong, Chi Kong & Hobbs, Benjamin F., 2014. "Strategic Eurasian natural gas market model for energy security and policy analysis: Formulation and application to South Stream," Energy Economics, Elsevier, vol. 44(C), pages 198-211.
    12. Holz, Franziska & von Hirschhausen, Christian & Kemfert, Claudia, 2008. "A strategic model of European gas supply (GASMOD)," Energy Economics, Elsevier, vol. 30(3), pages 766-788, May.
    13. Ibrahim Abada, 2012. "A stochastic generalized Nash-Cournot model for the northwestern European natural gas markets with a fuel substitution demand function: The S-GaMMES model," Working Papers 1202, Chaire Economie du climat.
    14. Orlov, Anton, 2015. "An assessment of optimal gas pricing in Russia: A CGE approach," Energy Economics, Elsevier, vol. 49(C), pages 492-506.
    15. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    16. Guo, Yingjian & Hawkes, Adam, 2019. "Asset stranding in natural gas export facilities: An agent-based simulation," Energy Policy, Elsevier, vol. 132(C), pages 132-155.
    17. Rossana Riccardi & Giorgia Oggioni & Elisabetta Allevi & Abdel Lisser, 2023. "Complementarity formulation of games with random payoffs," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    18. Feijoo, Felipe & Huppmann, Daniel & Sakiyama, Larissa & Siddiqui, Sauleh, 2016. "North American natural gas model: Impact of cross-border trade with Mexico," Energy, Elsevier, vol. 112(C), pages 1084-1095.
    19. Hassan Hamie & Anis Hoayek & Hans Auer, 2020. "Modeling Post-Liberalized European Gas Market Concentration—A Game Theory Perspective," Forecasting, MDPI, vol. 3(1), pages 1-16, December.
    20. Ibrahim Abada, 2012. "Study of the evolution of the northwestern European natural gas markets using S-GaMMES," Working Papers 1203, Chaire Economie du climat.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:53:y:2005:i:5:p:799-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.