IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v66y2020i10p4667-4685.html
   My bibliography  Save this article

Online Demand Fulfillment Under Limited Flexibility

Author

Listed:
  • Zhen Xu

    (School of Management, Fudan University, Shanghai 200433, China;)

  • Hailun Zhang

    (Institute for Data and Decision Analytics, The Chinese University of Hong Kong, Shenzhen 518172, China;)

  • Jiheng Zhang

    (Department of Industrial Engineering & Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China)

  • Rachel Q. Zhang

    (Department of Industrial Engineering & Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China)

Abstract

We study online demand fulfillment in a class of networks with limited flexibility and arbitrary numbers of resources and request types. We show analytically that such a network is both necessary and sufficient to guarantee a performance gap independent of the market size compared with networks with full flexibility, extending the previous literature from the long chains to more general sparse networks. Inspired by the performance bound, we develop simple inventory allocation rules and guidelines for designing such network structures. Numerical experiments including one using some real data from Amazon China are conducted to confirm our findings as well as some of the flexibility principles conjectured in the literature.

Suggested Citation

  • Zhen Xu & Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Online Demand Fulfillment Under Limited Flexibility," Management Science, INFORMS, vol. 66(10), pages 4667-4685, October.
  • Handle: RePEc:inm:ormnsc:v:66:y:2020:i:10:p:4667-4685
    DOI: 10.1287/mnsc.2019.3449
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2019.3449
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2019.3449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2011. "Process Flexibility Revisited: The Graph Expander and Its Applications," Operations Research, INFORMS, vol. 59(5), pages 1090-1105, October.
    2. Ping Josephine Xu & Russell Allgor & Stephen C. Graves, 2009. "Benefits of Reevaluating Real-Time Order Fulfillment Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 340-355, January.
    3. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    4. Avishai Mandelbaum & Alexander L. Stolyar, 2004. "Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality of the Generalized cμ-Rule," Operations Research, INFORMS, vol. 52(6), pages 836-855, December.
    5. Seyed M. Iravani & Mark P. Van Oyen & Katharine T. Sims, 2005. "Structural Flexibility: A New Perspective on the Design of Manufacturing and Service Operations," Management Science, INFORMS, vol. 51(2), pages 151-166, February.
    6. Seyed M. R. Iravani & Bora Kolfal & Mark P. Van Oyen, 2007. "Call-Center Labor Cross-Training: It's a Small World After All," Management Science, INFORMS, vol. 53(7), pages 1102-1112, July.
    7. David Simchi‐Levi & He Wang & Yehua Wei, 2018. "Increasing Supply Chain Robustness through Process Flexibility and Inventory," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1476-1491, August.
    8. Achal Bassamboo & Ramandeep S. Randhawa & Jan A. Van Mieghem, 2010. "Optimal Flexibility Configurations in Newsvendor Networks: Going Beyond Chaining and Pairing," Management Science, INFORMS, vol. 56(8), pages 1285-1303, August.
    9. Tanrisever, Fehmi & Morrice, Douglas & Morton, David, 2012. "Managing capacity flexibility in make-to-order production environments," European Journal of Operational Research, Elsevier, vol. 216(2), pages 334-345.
    10. John N. Tsitsiklis & Kuang Xu, 2017. "Flexible Queueing Architectures," Operations Research, INFORMS, vol. 65(5), pages 1398-1413, October.
    11. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    12. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    13. David Simchi-Levi & Yehua Wei, 2012. "Understanding the Performance of the Long Chain and Sparse Designs in Process Flexibility," Operations Research, INFORMS, vol. 60(5), pages 1125-1141, October.
    14. Tianhu Deng & Zuo-Jun Max Shen, 2013. "Process Flexibility Design in Unbalanced Networks," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 24-32, April.
    15. Mabel C. Chou & Geoffrey A. Chua & Chung-Piaw Teo & Huan Zheng, 2010. "Design for Process Flexibility: Efficiency of the Long Chain and Sparse Structure," Operations Research, INFORMS, vol. 58(1), pages 43-58, February.
    16. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    17. Vahideh H. Manshadi & Shayan Oveis Gharan & Amin Saberi, 2012. "Online Stochastic Matching: Online Actions Based on Offline Statistics," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 559-573, November.
    18. Suri Gurumurthi & Saif Benjaafar, 2004. "Modeling and analysis of flexible queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 755-782, August.
    19. Rodney B. Wallace & Ward Whitt, 2005. "A Staffing Algorithm for Call Centers with Skill-Based Routing," Manufacturing & Service Operations Management, INFORMS, vol. 7(4), pages 276-294, August.
    20. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    21. Stephen C. Graves & Brian T. Tomlin, 2003. "Process Flexibility in Supply Chains," Management Science, INFORMS, vol. 49(7), pages 907-919, July.
    22. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    23. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verma, Nishant Kumar & Chatterjee, Ashish K., 2023. "Process flexibility in the presence of product modularity: Does modularity help?," International Journal of Production Economics, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Shi & Yehua Wei & Yuan Zhong, 2019. "Process Flexibility for Multiperiod Production Systems," Operations Research, INFORMS, vol. 67(5), pages 1300-1320, September.
    2. Shixin Wang & Xuan Wang & Jiawei Zhang, 2021. "A Review of Flexible Processes and Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1804-1824, June.
    3. Arash Asadpour & Xuan Wang & Jiawei Zhang, 2020. "Online Resource Allocation with Limited Flexibility," Management Science, INFORMS, vol. 66(2), pages 642-666, February.
    4. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    5. Antoine Désir & Vineet Goyal & Yehua Wei & Jiawei Zhang, 2016. "Sparse Process Flexibility Designs: Is the Long Chain Really Optimal?," Operations Research, INFORMS, vol. 64(2), pages 416-431, April.
    6. Xuan Wang & Jiawei Zhang, 2015. "Process Flexibility: A Distribution-Free Bound on the Performance of k -Chain," Operations Research, INFORMS, vol. 63(3), pages 555-571, June.
    7. Timothy C. Y. Chan & Douglas Fearing, 2019. "Process Flexibility in Baseball: The Value of Positional Flexibility," Management Science, INFORMS, vol. 65(4), pages 1642-1666, April.
    8. Rujeerapaiboon, Napat & Zhong, Yuanguang & Zhu, Dan, 2023. "Resilience of long chain under disruption," European Journal of Operational Research, Elsevier, vol. 309(2), pages 597-615.
    9. Xi Chen & Jiawei Zhang & Yuan Zhou, 2015. "Optimal Sparse Designs for Process Flexibility via Probabilistic Expanders," Operations Research, INFORMS, vol. 63(5), pages 1159-1176, October.
    10. Jingui Xie & Yiming Fan & Mabel C. Chou, 2017. "Flexibility design in loss and queueing systems: efficiency of k-chain configuration," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 286-308, June.
    11. Xi Chen & Tengyu Ma & Jiawei Zhang & Yuan Zhou, 2019. "Optimal Design of Process Flexibility for General Production Systems," Operations Research, INFORMS, vol. 67(2), pages 516-531, March.
    12. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    13. Shixin Wang, 2023. "The Power of Simple Menus in Robust Selling Mechanisms," Papers 2310.17392, arXiv.org.
    14. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    15. Chua, Geoffrey A. & Chen, Shaoxiang & Han, Zhiguang, 2016. "Hub and Chain: Process Flexibility Design in Non-Identical Systems Using Variance Information," European Journal of Operational Research, Elsevier, vol. 253(3), pages 625-638.
    16. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    17. Mabel C. Chou & Geoffrey A. Chua & Huan Zheng, 2014. "On the Performance of Sparse Process Structures in Partial Postponement Production Systems," Operations Research, INFORMS, vol. 62(2), pages 348-365, April.
    18. Dipankar Bose & A. K. Chatterjee & Samir Barman, 2016. "Towards dominant flexibility configurations in strategic capacity planning under demand uncertainty," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 604-619, September.
    19. David Simchi-Levi & Yehua Wei, 2015. "Worst-Case Analysis of Process Flexibility Designs," Operations Research, INFORMS, vol. 63(1), pages 166-185, February.
    20. Daniel Freund & S'ebastien Martin & Jiayu Kamessi Zhao, 2024. "Two-Sided Flexibility in Platforms," Papers 2404.04709, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:66:y:2020:i:10:p:4667-4685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.